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Preface

This book is the second and substantially enlarged edition of the Springer
Lecture Notes No. 88: Field Matter Interactions in Thermoelastic Solids,
which appeared in 1978 and is out of print for about two decades. Since then,
the basic issues addressed by the authors in that book have little changed:
Because of the nonunique definition of the electromagnetic field quantities
in ponderable bodies, constitutive postulates, e.g., for the stress tensor and
other field quantities, must adequately be postulated, if two theories aiming to
describe the same physical phenomenon yield for the same physical problem
the same values of the observables. In the Lecture Notes, equivalence relations
were established, which guarantee such equivalences for thermoelastic bodies,
but no applications of the complex theory were given. Nevertheless, there
was a continuous demand for the book, which was fulfilled by producing
photocopies.

In the meantime, however, the authors continued to work on continuum
problems of electromagneto-mechanical interactions, in which the theoretical
models or simplifications were applied to practical problems. A.A.F. Van de
Ven (AV) worked with students and postdoctoral fellows for more than two
decades on problems of magnetoelastic instabilities, i.e., buckling of ferro-
magnetic and superconducting beams, plates and more complex structures,
* and on magnetoelastic vibrations of the same type of structures. In the latter
problems, it is specifically the eigenfrequencies that need to be determined,
inclusive of their dependence on the applied magnetic field or electric current.
K. Hutter (KH) who was not involved with electrodynamics for 10 years, took
up electromagnetic continua again about 15 years ago and concentrated on
applications in fluids, as well as electrorheology. In this field, equivalence of
formulations is equally a question of electromagneto-mechanical interactions.
Here, the central theme is the postulation of adequate constitutive relations,
which achieve the electrorheological effect, namely the transition from low
viscous fluid behaviour to very high viscous response when the electric field
is switched on. The application to plane Poiseuille flow of a theory was de-
veloped in a Ph.D. dissertation by W. Eckart, to 2D pipe flow with various
arrangements of electrodes along the walls of the bottom and the lid of the
2D channel, which was made by Ana Ursescu (AU). Ursescu is joining us as
the third author of this book.
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This then outlines the content of the present book. In its first part it
contains the material of the first edition and is due to AV and KH. Only
small changes have been made to this text. Few adjustments were necessary
because of the additions that were made. A few supplementing references
are given to account for the recent literature. In the applications, the new
chapter on Magnetoelastic (In)stability and Vibrations is due to AV and the
chapter on Electro-rheological Fluids has been drafted by AU along with KH.
The entire text has been screened for consistency and homogenization by AV
and KH.

The increasing interest in electromagnetic problems in the last decade of
the last century manifested itself in the appearance of a new journal in 1990,

International Journal of Applied Electromagnetics in Materials (IJAEM),

founded by K. Miya from Tokyo, and Richard K.T. Hsieh from Stockholm.
The first plans for this new journal were made in 1986, during a IUTAM-
Symposium in Tokyo alongwith Miya, Hsieh, Gerard Maugin, Francis Moon,
Junji Tani, and one of the authors, AV. The birth of the new journal was
accompanied by a series of ISEM symposia (International Symposia on Ap-
plied Electromagnetics in Materials, under the chairmanship of Miya) from
1988 until the present time. The 12th ISEM took place in 2005 in Salzburg,
Austria.

One proviso to the style of the book should be mentioned. Reading the
text is not easy. When developing results we are brief and we often outline the
steps as to how a result is reached but do not present any details. Thus, the
reader is expected to perform the in-between steps, or perhaps even consult
the literature. Such an approach is almost unavoidable in electromagneto-
mechanical interactions. The computations that are in principle not difficult,
but generally involved and long, cannot be presented in detail as it would
make the book twice as voluminous, and most likely rather boring over long
stretches. We regard this as an acceptable compromise.

We wish to thank our sponsors and many of our friends in this field
who have directly or indirectly contributed to this project. AV thanks the
Technische Universiteit Eindhoven for their general support to the research
on electromagnetoelastic interactions over many years (from 1975 onwards)
and he especially thanks, many students for their contributions in particular
M. Couwenberg, P. Rongen, P. Smits, and P. van Lieshout, who essentially
supported the research on magnetoelastic instabilities. Moreover, he highly
appreciates the cooperation and the many fruitful discussions in this area
with A.O. J. Tani, Y. Shindo, K. Miya, Shu-Ang Zhou, B. Marusewski, and
J.P. Nowacki. KH thanks the Darmstadt University of Technology and the
Deutsche Forschungsgemeinschaft (German Research Foundation) for nearly
20 years of support. He also acknowledges the support of W. Eckart and
AU in particular for their Ph.D. and postdoctoral fellowships in which the
Electrorheological work presented in this book was created. He also thanks
Professor K.R. Rajagopal and M. Ruzicka for their interest in our work on
electrorheology.
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Preface VII

We also thank E. Vasilieva and A. Maurer for compiling the text of the
first edition and helping with the editing of the entire manuscript. Finally
our thanks go to Dr. Ch. Caron from the Springer Verlag for his interest in
this book and his willingness to publish it.

Darmstadt, Eindhoven K. Hutter
Spring 2006 A. Ursescu
A.A.F. Van de Ven



Preface to the First Edition

The last two decades have witnessed a giant impetus in the formulation of
electrodynamics of moving media, commencing with the development of the
most simple static theory of dielectrics at large elastic deformations, proceed-
ing further to more and more complex interaction models of polarizable and
magnetizable bodies of such complexity as to include magnetic dissipation,
spin-spin interaction and so on and, finally, reaching such magistral synthesis
as to embrace a great variety of physical effects in a relativistically correct
formulation. Unfortunately, the literature being so immense and the methods
of approach being so diverse, the newcomer to the subject, who may initially
be fascinated by the beauty, breadth and elegance of the formulation may
soon be discouraged by his inability to identify two theories as the same,
because they look entirely different in their formulation, but are suggested
to be the same through the description of the physical situations they apply
to. With this tractate we aim to provide the reader with the basic concepts
of such a comparison. Our intention is a limited one, as we do not treat the
most general theory possible, but restrict ourselves to non-relativistic formu-
lations and to theories, which may be termed deformable, polarizable and
magnetizable thermoelastic solids. Our question throughout this monograph
is basically; what are the existing theories of field-matter interactions; are
' these theories equivalent, and if so; what are the conditions for this equiva-
lence? We are not the first ones to be concerned with such fundamental ideas.
Indeed, it was W.F. BROWN, who raised the question of non-uniqueness of the
formulation of quasistatic theories of magnetoelastic interactions, and within
the complexity of his theory. he could also resolve it. PENFIELD and HAUS,
on the other hand, were fundamentally concerned with the question how elec-
tromagnetic body force had to be properly selected. This led them to collect
their findings and to compare the various theories in an excellent monograph,
in which they rightly state that equivalence of different formulations of elec-
trodynamics of deformable continua cannot be established without resort to
the constitutive theory, but at last, they dismissed the proper answer, as their
treatment is incomplete in this regard. For this reason the entire matter was
re-investigated in the doctoral dissertation of one of us (K. HUTTER), but
this work was soon found unsatisfactory and incomplete in certain points,
although the basic structure of the equivalence proof as given in Chap. 3 of



X Preface to the First Edition

this tractate, was essentially already outlined there. Moreover, HUTTER was
still not able to compare certain magnetoelastic interaction theories so that
what he attempted remained a torso anyhow.

The difficulties were overcome by VAN DE VEN in a series of letters,
commencing in fall of 1975, in which we discussed various subtleties of mag-
netoelastic interactions that had evolved from each of our own work. The
correspondence was so fruitful that we soon decided to summarize our efforts
in a joint publication. It became this monograph, although this was not our
initial intention. Yet, after we realized that a proper treatment required a
presentation at considerable length, we decided to be a little broader than
is possible in a research report and to write a monograph, which would be

suitable at least as a basis for an advanced course in continuum mechanics

and electrodynamics (graduate level in the US). We believe that with this
text this goal has been achieved. We must at the same time, however, warn
the reader not to take this tractate as a basis to learn continuum mechanics
and/or electrodynamics from the start. The fundamentals of these subjects
are assumed to be known.

Our acknowledgements must start with mentioning Profs. J.B. ALBLAS
(Technological University Eindhoven) and Y.H. PAO (Cornell University).
They were the ones who initiated our interest in the subject of magnetoelas-

tic interactions. While performing the research for this booklet and during our *

preparation of the various draughts we were supported by our institutions,
the Federal Institute of Technology, Ziirich and the Technological Univer-
sity, Eindhoven, and were, furthermore, encouraged by Prof. J.B. ALBLAS,
Eindhoven, Prof. D. VISCHER, Ziirich, Prof. I. MULLER, Paderborn, Prof.
H. PARKUS, Vienna, Dr. Ph. BOULANGER, Brussels and Dr. A. PRECHTL,
Vienna. The support and criticism provided by them, directly or indirectly,
were extremely helpful. We are grateful to these people not only for their
keen insight and willingness to discuss the issues with us, but also for their
encouragement in general.

During the initial stage and again towards the end of the write-up of
the final draught of this monograph K. HUTTER was financially supported
in parts by the Technological University, Eindhoven, to spend a total of a
two months period (September 1976 and April 1978) at its Mathematics
Department. Without the hospitality and the keen friendship of the faculty
and staff members of this department and especially of Prof. J.B. ALBLAS and
his group, the work compiled in these notes would barely have been finished
so timely. The burden of typing the manuscript was taken by Mrs. WOLFs-
VAN DEN HURK. It was her duty to transform our hand-written draughts into
miraculously looking typed sheets of over 200 pages. Her effort, of course, is
gratefully acknowledged.

Eindhoven and Ziirich K. Hutter
in the summer of 1978 A.A.F. Van de Ven
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