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Preface

We intend this book as preparation for senior undergraduate or first-year
graduate students in the fundamental knowledge (mechanics, materials, basic
numerical methods) needed to understand the analysis of metal-forming opera-
tions. It spans the considerable gap between traditional materials approaches
(centering on material properties and structure) and purely mechanical ones
(centering on force balances, and numerical methods). While seeking simplicity
and comprehension, we do not avoid complex issues or mathematics (such as
tensors) needed as preparation for further study leading to high-level modeling
capability. In view of the progress in numerical methods and computation, these
techniques are now so widespread as to be essential for many applications in the
mechanics of materials.

The breadth of the intended audience (four distinct groups depending
on educational discipline and rank) requires that various parts of the book
be emphasized for a given course. For more than ten years, the first author
has taught a senior undergraduate course in metal forming to metallurgical
engineering students, in which certain parts of this book are used thor-
oughly while other parts are omitted. For example, such a course may
consist of the following:

Senior-level course on Metal Forming

(For materials or mechanical engineering students)

Chapter 1 Complete

Chapter 2-4 Very briefly, little tensor manipulation
Chapter 7 von Mises and Hill’s normal quadratic yield
Chapter 9 Complete

Chapter 10 Complete

The first author has also used the material in this book to teach a first-year
graduate course to materials and mechanical engineering students on the
subjects of elasticity and plasticity, where the emphasis has been different:

Graduate course on Elasticity and Plasticity

(For materials or mechanical engineering students)

Chapter 1 Second part, analysis of tensile test

Chapter 2-4 Covered moderately, very brief on large-strain measures
Chapter 5 Very brief, to introduce work methods (more for ME)
Chapter 6 Complete

Chapter 7 Complete

Chapter 8 Complete (less for ME)

Colleagues have used early versions of the material in this book to teach
graduate courses on the subject of continuum mechanics to engineering me-
chanics students, with good results.



Graduate course in Continuum Mechanics
(For engineering mechanics or mechanical engineering students)

Chapter 2 Complete, brief review

Chapter 3 Complete

Chapter 4 Complete

Chapter 5 Complete

Chapter 6 Continuum aspects, omit crystal symmetry
Chapter 7 von Mises isotropic plasticity

The second author has taught the techniques and material in this book in a
variety of settings, including: undergraduate courses in several French engi-
neering schools, one-week training courses for engineers in industry, and
graduate courses in the Ecole des Mines and French universities.

The background of the students and the disciplines in which these courses
were offered included continuum mechanics, plasticity and viscoplasticity, and
general numerical methods and finite elements.

We are convinced that students learn by doing, not by reading, and thus
have included numerous problems in each chapter, ranging in difficulty from
using equations and derivations presented in the text (Proficiency Problems) to
ones requiring creative and original thought (Depth Problems). Solutions for all
of these problems are available in a Solutions Manual for this volume. We have
added a third class of problems, Numerical Problems, requiring students to write
and use their own computer programs. We believe that this approach, while
frequently slow and painful, encourages greater understanding and mastery of
the material.

This book is limited to a presentation of the fundamental mechanics,
materials, and basic numerical concepts used in metal forming analysis. An
advanced treatment that starts from this basis and develops the finite element
method and illustrates its use in actual analysis, is nearing completion. There-
fore, concepts particular to finite element analysis and complex forming appli-
cation have been deferred to that volume.

Robert H.Wagoner, Columbus, Ohio
Jean-Loup Chenot, Sophia-Antipolis, France

February 1996
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i note about notation

There are nearly as many kinds of notations for the various symbols
representing mathematical quantities as there are authors in the field. We have
attempted to follow a pattern that is intuitively consistent without striving for
complete mathematical precision in each and every usage. In fact, no set of
symbols, no matter how carefully defined, can replace understanding of the
physical concepts and the underlying meaning of the equations and operations.
We shall not attempt to cover every exception or eventuality in this note, but
rather hope to provide a guide to our concept of the notation. In the first few
chapters, we will provide examples of alternate notation while in later ones we
will use the most convenient form.

We will not refer to curvilinear coordinates. Thus, all indices refer to
physical axes or components and are placed in the subscript position. Also,
vectors and tensors refer only to physically real quantities, rather than the
generalized usage commonly found in the finite element community. Here are
examples of the notation guidelines we follow.

SCALARS (a, A, o, t, T, a,, ay,...)
Scalar quantities are physical quantities represented by a simple number,
upper case or lower case and in any style (italics, Latin, Greek, etc.).

VECTORS (a, b, c...)

Physical vectors (as opposed to generalized 1-D arrays of numbers) will be
represented by lower case bold letters” , with several subsidiary techniques for
emphasizing the components rather than the entire vector quantity:

a
a=a;&) +a8; +a3e3 =[al§ & ay,a,a3 & |ay |=[a;]=[a] & a;

as

The vector a is shown as the sum of three scalar components multiplied by
three base vectors ( e ). Since base vectors are the same as any other vector except
for their intended use, any lower-case bold letter can represent them. We use e
specifically to emphasize the use of the vectors to represent other vectors (i.e. as
base vectors). (In some cases, we will use x,X,,X3 to emphasize that the base
vectors form a Cartesian set.) The superposed carat emphasizes that the vector
is of unit length. The third representation emphasizes that the vector a can be
decomposed into a magnitudela| (or sometimes simply “a”) and a direction
represented by a unit vector a.

* We will on occasion use capital letters for vectors or their components to indicate some special
quality or connection with another vector. An example is the expression of a given vector’s
components in an alternate coordinate system, or the same material vector at different times.
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[A] <> transposeof[A]
[A]™ <> inverseof[A]
|Al <> determinantof[A]

[A][B][C]«> matrixmultiplication

[1] <> identity matrix

Each form can also include subscript indices to emphasize the components.

INDICIAL FORM (Aij, B; C;...)

The indicial forms of vectors, tensors, and matrices have been introduced
above by the loose equivalence with other notations. Thus, for example, the
multiplication of matrices [A] and [B] can be represented by A;B, = C;, which
can be interpreted for any one component (the ikt one), or for all components
(wherei=1,2,3;k=1,23 for 3-D space, for example). However, the subscriptj
is a dummy index because we follow Einstein’s summation convention where
any repeated index is summed over to obtain the result. [i and k, conversely, are
free indices because we are free to choose their values].

A few symbols are useful for representing matrix and tensor operations:

. Oifi#j
8j; = Kronecker delta, with the property that §;; =

lifi#]
€jjk = Permutation operator,

0 if i =ji=k;j=k
if ik =1,2,3;2,3,1;,0r3,1,2

with the property that Eijjk = 1
-1 if ik =3,2,1;1,2,3;0r2,1,3

FUNCTIONS AND OPERATORS (L,FK...)

We will denote functions and operators with script symbols without regard
to the domain or range of the operation. These spaces will be clarified when the
operator is first introduced. For example, x = L(A) indicates that L is an operator
which operates on a tensor and results in a vector. 2nd ranked tensors are often
defined, for example, as linear vector operators [i.e. a linear operator that
operates on a vector and has a vector result].

Xiv



The symbol “«»” means that we will treat the other notations as equivalent
even though they are not precisely equal. The right-hand side therefore empha-
sizes the components of a while ignoring the base vectors, which presumably
have been defined elsewhere and are unchanged throughout the problem of
interest. The brackets indicate an emphasis on all components, either in matrix
or indicial form. (Note that the vector nature of a is not shown on the bracketed
form, since the components need not apply to a physical vector.) The second
“¢>" indicates that a, can be used to indicate a single component of a (the ith one),
or in the general sense, all of the components (i.e. for i=1,2,3 for 3-D space).

We will occasionally use a similar notation to denote numerical “vectors”
such as those encountered in F.E.M. and other applications. In these cases, the
range on the subscripts will be determined by the problem itself, rather than
being limited to 3, as for usual 3-D space.

A few other vector notations are useful:

x indicates the vector cross product
. indicates the vector or tensor dot product

TENSORS OF RANK GREATER THAN 1 (A, B, C..)

Our tensor notation follows precisely the vector usage except we shall
attempt to use upper case letters to represent tensors of rank greater than one.
(Exceptions will apply to tensors which have almost ubiquitous usage, such as
o for the stress tensor or € for the infinitesimal strain tensor.) Therefore, our
tensor notation closely follows our vector notation:

A11ApAgs
Ao | AyAnAy =[Aij]=[A]HAij
A31A3Az;3

MATRICES ([A], [a], [a]....)

Our matrix notation follows the bracketed forms introduced for physical
vectors and tensors, without regard to whether the components represent
physical quantities:

Ap1ApA3
A21A2A3 =[Aij]=[A]<—>Aij
A31A3Az3

As before, the right-most form can be interpreted as a single component (the ithjth
one)orasall of thecomponents (i=1,2,3;j=1,2,3 for general 3-D space). The bracketed
forms emphasize all of the components, in the order shown by the first matrix.

We will tend to use lower case letters for column matrices, which corre-
spond closely to vectors, but this may not always be possible while preserving
clarity. Several other common usages for matrices:
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The Tensile Test and Basic Material Behavior

Fundamental and practical studies of metal mechanical behavior usually
originate with the uniaxial tension test. Apparently simple and one-dimen-
sional, a great deal of hidden information may be obtained by careful observa-
tion and measurements of the tensile test. On the other hand, the underlying
physical complexity means that interpretation must be quite careful (along
with the procedure followed to conduct the test) if meaningful results are to be
realized.

In this chapter, we present a range of concepts at the simplest, most intuitive
level. Many of these concepts will be expounded and presented in more math-
ematical form in subsequent chapters. This approach has the advantage of
introducing basic mathematical and numerical ideas without the formalisms
that are a source of confusion to many students when first encountered. How-
ever, the downside is that some of the introductions and treatments in this
chapter are not precise and cannot be extended to more general situations
without additional information.

Structurally, this chapter is divided into two parts: the first introduces the
tensile test and the standard measures of material response. In the second
section, we introduce all of the techniques necessary for analyzing a nonuniform
tensile test. This analysis is not of great research interest because this 1-D form
omits important aspects of the physical problem that can now be simulated
using more powerful numerical methods. By omitting multi-axial complexity,
however, we lose little of qualitative importance, and are able to illustrate the
use of several numerical methods that will be needed in subsequent chapters,
especially Chapter 10.



2 Chapter 1 The Tensile Test and Material Behavior

1.1

1.2

TENSILE-TEST GEOMETRY

Standard tensile test analysis is based on an ideal view of the physical problem.
Along, thin rod is subjected to an extension (usually ata constant extension rate)
and the corresponding load is measured.! The basic assumptions are that the
loading is purely axial and the deformation takes place uniformly, both along
the length of the specimen and throughout the cross-section. Under these
conditions, it is sufficient to measure just two macroscopic quantities for much
of the desired information: extension and load.

Two kinds of tensile specimens are used for standard tests: a round bar for
bulk material (plates, beams, etc.), and a flat specimen for sheet products. Each
is subject to ASTM specifications and has a nominal gage length of 2 inches. The
gage length refers to the distance between ends of an extension gage put on the
specimen to measure extension between these points. The deforming length is
the length of the specimen that undergoes plastic deformation during the test.
This length may change but should always be significantly longer than the gage
length in order to ensure that the stress state is uniaxial and deformation is
quasi-uniform over the gage length. Figure 1.1 shows the general geometry.

Grip Region

ASTM round bar

abilidiepolblhesrCllce—citioelaridaeal I bomtiloe il s ilbs

| L l ——— Gage length (G) ————
l ———— Deforming length (D) —————
e S — Total length (T) — ——— —

— — —%

0.5"

ASTM sheet specimen

Grip Region Thickness

Figure 1.1 Standard tensile specimen shapes.

MEASURED VARIABLES

A standard tensile test is carried out by moving one end of the specimen (via
a machine crosshead) at a constant speed, v, while holding the other end fixed.
The primary variables recorded are load (P) and extension (Al). Note that the
extension could be obtained by multiplying v times t (time). This is done in
some cases, but usually the “lash” (looseness) in the system necessitates use of
an extension gage for accuracy. A typical load-extension curve appears in
Figure 1.2.

! Variations on the basic method include imposing a certain load and measuring the extension or
extension rate, or imposing jumps in rates or loads. These tests will not be considered in detail
here, although they are very useful for materials research and for high-temperature deformation
investigations.



1.3

1.3 Engineering Variables

Load, P 4

Fracture

— - Elastic

Extension, Al

Figure 1.2 Typical response of a metal under uniaxial tension.

Note that the load-extension variables depend on specimen size. If, for
example, the specimen were twice as large in each direction, the load would be

3

four times as great, and the extension would be twice as great. Since we want to

measure material properties, we normalize the measured variables to account

for specimen size. The simplest way to do this is to normalize to the original

specimen geometry.

ENGINEERING VARIABLES (NORMALIZED TO ORIGINAL
SPECIMEN SIZE)

The variables may be defined as follows:
c.= P /A_ = engineering stress,

e

e= Al/1 = engineering strain (sometimes called elongation)
(Note: 1, is usually equated to the gage length, L, Fig. 1.1.)

where the following notation is used:

A = initial cross-sectional area
l= G = initial gage length

Al= 1-1,= change in gage length, extension

Engineering stress, o,

Engineering strain, e
fa)

Figure 1.3 Points of special interest in a tensile test.



4 Chapter 1 The Tensile Test and Material Behavior

Engineering stress has units of force per area, and engineering strain is
dimensionless (mm/mm, for example). Engineering strain is often presented as
a percentage by multiplying by 100.

Other basic engineering quantities may be derived from the other ones as
follows. The point at A(e,, 6,) is of great interest and it may be used to define

E= Young’s modulus = ¢/e in the elastic region

o, = yield point, yield stress, yield strength, elastic limit, or proportional
- limit.

When finer resolution is available (Figure 1.3b), the apparent point A is seen
as part of a smooth curve. This smoothness leads to ambiguity in defining A, so
several other points are used:

G, = proportional limit, or stress at which the stress-strain curve ceases
to be linear. (This is rather subjective and depends on the resolution
and magnification of the curve.)

G, = elasticlimitoryield stress, the minimum stress required to produce
a permanent, plastic deformation. It can be found only by repeated
loadings and unloadings. 6,.. may be less than or greater than o,.
and 6.

o= 0.2% offset strength, often called the yield strength, is obtained by
drawing a line parallel to the elastic line but displaced by Ae = 0.002
(0.2%) and noting the intersection with the stress-strain curve.

The point B(e,, ¢,,.), at the maximum load sustainable by the specimen,

defines
e, = wuniform elongation (elongation before necking begins)
G,.= ultimate tensile strength

The point C (e, 6, ) defines the limit of the tensile ductibilty or formability.

e= total elongation

e.,= (e,-e,) = post-uniform elongation



1.4

1.4 True Variables (Normalized to Current Configuration) 5

The engineering-strain rate, e, is defined as de/dt, and is the rate at which
strain increases. This quantity can be obtained simply by noting that all the
strain takes place in the deforming length, D, so that the crosshead speed, v, is
the same as the extension rate of D (See Fig. 1.1). That is,

de _ dD/D, _ dT/D, _ v _ crosshead speed (1.1)
dt dt dt D, deforming length '

The third equality is correct because the region outside of D is rigid; that is
it does not deform, so that the velocity of all points outside of D is the same, and
dD =dT (T = total length, Figure 1.1).

TRUE VARIABLES (NORMALIZED TO CURRENT
CONFIGURATION)

Assume the original tensile test shown in Figure 1.4a is stopped at point X, and
the specimen is unloaded to point Y. If the tensile test is then restarted, the
dashed line will be followed approximately, and the specimen will behave as if
no interruption occurred. If, instead, we remove the specimen and hand it to a
new person to test, as in Figure 1.4b, the result will be quite different. The
second person will measure the cross-sectional area and find a new number, Aj,
because the previous deformation reduced the width and thickness while
increasing the length.

A A

o -0
< <
< <
o o

I I
o’ o®
3 ; A
§ /-—-0-—\ g
wv ! ‘!7;
oo Qo
£ . £
= =
Q) Q
(] (]
£ =
) a0
[~ : —3
(F¥) [T8)

v 4
@ >
Engineering strain, e = AI/IO Engineering strain, e = Al

(a) (b)

Figure 1.4 Interrupted tensile test

The same load will be required to deform the specimen, but the engineer-
ing stress will be different: o, =P/A{. Obviously, if yield stress is to have a
real material meaning, o, = o’y ,independent of who tests it. Similarly, a small

extension at point X will produce different measured engineering strains for
the same reason:



6 Chapter 1 The Tensile Test and Material Behavior

e, = — , e, = (1.2)

To take care of this problem, we introduce real or “true” strain, an incre-
ment of which refers to an infinitesimal extension per unit of current length. We
limit ourselves to a small extension to insure that the current length is constant
and well known. By assuming that the incremental strain over the current gage
length is uniform, we can write mathematically that the true strain increment is
de = dl/1 (not dl/1l;). We can express the total true strain as a simple integral:

€ 1
8=Jt de=J‘lﬂﬂe=lni (1.3)

g=0 o 1 o
Similarly, the real or true stress refers to the load divided by the current
cross-sectional area:

o, = ( not AL) (1.4)

(&}

A

Exactly analogous to the definition of engineering-strain rate, the true-
strain rate is defined as de/dt. As in Section 1.3, this rate is simply related to the
crosshead speed:

s—ﬁ _ db/D _ dT/D _ v _ crosshead speed
O dt dt dt D current deforming length (1.5)

1.5 RELATIONSHIP AMONG TRUE AND ENGINEERING

VARIABLES
Definitions Engineering True
. I -1,
Strain o= e=Inlg/1, (1.6)
L
Stress Ce = l’/Ao c;=P/A (17)

Equation 1.6 yields the relationship between the two strain representations
with only simple manipulation:

e=exp(e)—1 e=In(l+e) (1.8)

Equation 1.7 cannot be solved simultaneously until a relationship be-
tween the original and current cross-sectional area (A, A) is known. A

o’



