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FOREWORD

This volume presents some of the recent advances in control theories and applications for non-
linear and/or uncertain systems. These papers were presented in three technical sessions during
the 1992 Winter Annual Meeting of The American Society of Mechanical Engineers (ASME) held
in Anaheim, California. The technical sessions and the editing of this volume were sponsored by
the System Theory Technical Panel of the Dynamic Systems and Control Division of the ASME.

All of the papers presented in the volume deal with the theory and application of robust control
and estimation system design methodologies for dynamic nonlinear systems with structured and/
or unstructured uncertainties.

The first section presents recent advances in the theory and application of robust control systems
design for structured undetainties.

The second section presents the application of nonlinear control systems to mechanical systems,
namely flexible structures and induction motors.

The third section discusses applications of robust nonlinear controllers (sliding mode control,
robust adaptive control, feedback linearization and fuzzy logic control methodologies) and esti-
mators, both from the application and design perspectives.

The editor is sincerely grateful to all of the authors and the technical session organizers for their
valuable contributions, which made this book possible. The editor would also like to thank Ms.
Leah Kinnaird for secretarial assistance.

Eduardo A. Misawa
Oklahoma State University
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ON ROBUST STABILITY AND PERFORMANCE
WITH TIME-VARYING CONTROL

Mohammed Dahleh
Department of Mechanical and Environmental Engineering
University of California
Santa Barbara, California

Abstract 1 Notation
i ill that time- i ompen-
‘In this Ppere S show tha ime-varying comp 2 Space of all square-summable sequences of real numbers.
sation provides no improvement over time-invariant com-
pensation for the stability and performance robustness 3 5
of discrete-time systems with structured norm-bounded & Space of n-tuples of elements of ¢*.
erturbations. The perturbations are causal, time-varying .
znd bounded in the £5-induced norm sense., Eiye Extended ¢2 space. It is equal to the space of all n-tuples

Sk

pXq
L5y

pXg
‘CTI

of sequences of real numbers.

Right shift by k positions. If z = {z(2)}2, is any se-

quence and k is a nonnegative integer, then
k

—_———
Sk = {0,...,0,2(0),z(1),...}. On the other hand,
Sk = {z(k),z(k + 1),...}. Hence S_;S; = I but
SkS_x £ L.

The space of all bounded linear causal operators mapping

R
(to & I R € L2 then |R] = sup L2l

which is
w20 |7]2

the induced operator norm.
x i " :
Subspace of L}} consisting of time-invariant operators.

The set of all causal operators mapping ¢2 to itself, with

induced 2 norm less than or equal to one. Hence, A :=

{A :SUp,4o Lﬁlg < 1}.

The set of all diagonal operators of the form A =
diag(Ay, ..., A,) where A; € A,

The set of all diagonal matrices of the form T

= diag(ty,...,t,) where t; > 0.



2 Introduction

The possible advantages of time-varying control for a certain
class of robust stabilization problems have been the subject of
research in the past few years. Starting with unstructured per-
turbation problems in the ¢, setting it was shown that under
certain conditions time-varying control offers no benefit for such
problems (see Khargonckar and Poolla (1989), or Chapellat and
Dahleh (1992) for a description of such results). For structured
uncertainty problems in the £, setting a similar conclusion was
reached in Khammash and Dahleh (1992).

In this paper we will show that the analogous result to
Khammash and Dahleh (1992) in the £, case is also true in

the ¢, case.

3 Setup

The setup for treating the stability robustness of time-varying
systems in the presence of structured norm-bounded uncertainty
is shown in figure 1. M is the interconnection of nominal lin-
ear time-varying plant/plants and linear time-varying stabiliz-
ing controller. A = diag(Ay,...,A,) is a structured perturba-
tion consisting of n perturbation blocks representing the sys-
tem uncertainty which is assumed to take place in n differ-
ent locations in the interconnection. Each perturbation block,
A; belongs to the class A and is therefore norm bounded.
The A;’s are independent of each other reflecting the situation
when the uncertainty has different sources. We will assume
that M is strictly causal to guarantee the well-posedness of the
interconnection. Robust stability is achieved if the mapping
(w1,u2) — (e1,€2,Y1,y2) maps £2 x £2 into €2 x €2 x (2 x €2
for all A € D(n). Since M and A are each ¢%- stable , robust
stability is achieved if and only if (I — MA)~! is £2- stable for
all A € D(n). Throughout this paper, this will be our robust

stability condition.

M Y1

Y2 A

Figure 1: Stability Robustness Problem for Time-Varying Sys-
tems

4 Time-Varying vs. Time-Invariant

Compensation

In what follows, if M is a time-varying system and m is any

integer, M (™ is defined to be S_,,MS,,.

Theorem 1 (Shamma (1992)) Let M € L3y, (I — MA)™!
is 02- stable for all A € D(n) only if
Tér%fn) TinréfoHTM(m)T‘lH <L

Proof. see Shamma (1992). u

Let M(Q) := H-UQV, where H, U, and V belong to £3%",
L7, and LE7" respectively, while Q@ € L. The following
theorem states that when structured perturbations are present,
time-varying compensation cannot improve on the stability ro-
bustness obtained through the use of time-invariant compensa-

tion.

Theorem 2 There ezists Q € LT such that (I — M(Q)A)™!
is £2- stable for all A € D(n) if and only if there ezists Q' € L7
such that (I — M(Q')A)™" is £%- stable for all A € D(n).

Proof. The sufficiency is trivial since £5}? C LF}. So we prove
the necessity.

Suppose Q € L5} such that (I — M(Q)A)™! is ¢2- stable for
all A € D(n). From theorem 1, this implies that for some integer
m, we have:

. . (m) =1
piof inf [TM™(@Q)T | < 1.



Figure 2: Performance Robustness Problem

Since S_x(H —UQV)S; is equal to H — US_;QS:V, we have :

c . (m) -1
Telg(fm,;gfollTM(Q T7H < 1.

Q™ € L5}, and there always exists Q' € £5%? such that
ITM(QNT™Y| < |ITM:A(QU™N)T-'|| (see Shamma and Dahleh
(1991) and Chapellat and Dahleh (1992) for a proof). This is
a necessary and sufficient condition for (I — M(Q")A)™! to be
£2- stable for all A € D(n). This completes the proof. |
Now we will analyze the effect of time-varying compensation
on the performance robustness. Fig. 2 shows the setup used for
robust performance problems. w will be the exogenous inputs
which are assumed to be in ¢%2, and z will be the regulated
output. M and A,’s are as before, except that M now has
n+1 inputs and n+ 1 outputs. Robust performance is achieved
if robust stability is achieved and the induced ¢? norm of the

operater mapping w to z is less than one for all A € D(n).

Theorem 3 There ezists Q € L for which the system in Fig.
2 achieves robust performance if and only if there exists Q' €
LE? for which the same system achieves robust performance.
Proof. Here again, the sufficiency is trivial. For the neces-
sity, suppose there exists Q@ € L}} for which the system in
the figure achieves robust performance. It follows from the
Small Gain Theorem that (I — M(Q)A)™! is £%- stable for all
A € D(n + 1). By Theorem 2, there exists Q' € L5} for which
(I — M(Q')A)™! is £2- stable for all A € D(n 4 1). This implies
that for @’ the system in Fig. 2 achieves robust performance.
| Y

The results in theorems 2 and 3 are true in the discrete-time
case, and almost identical proofs will yield the same conclusion

for the continuous-time case.

5 Conclusion

We have shown that linear time-invariant controllers perform
as well as time-varying controllers for the problem of robust
stability and performance for systems with structured norm
bounded perturbations. The resutls are an extension of the

{o-case (Khammash and Dahleh, 1992).
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LET'S GET REAL

Peter M. Young, Matthew P. Newlin, and John C. Doyle
Department of Electrical Engineering
California Institute of Technology
Pasadena, California

Abstract

This paper gives an overview of promising new developments in robust
stability and performance analysis of linear control systems with real
parametric uncertainty. The goal is to develop a practical algorithm
for medium size problems, where medium size means less than 100 real
parameters, and “practical” means avoiding combinatoric (nonpolyno-
mial) growth in computation with the number of parameters for all
of the problems which arise in engineering applications. We present
an algorithm and experimental evidence to suggest that this goal has,
for the first time, been achieved. We also place these results in con-
text by comparing with other approaches to robustness analysis and
considering potential extensions, including controller synthesis.

1 Introdhction

Robust stability and performance analysis with real parametric un-
certainty can be naturally formulated as a Structured Singular Value,
or , problem, where the block structured uncertainty description is
allowed to contain both real and complex blocks. It is assumed that
the reader is familiar with this type of robustness analysis, as space
constraints preclude covering both the engineering motivation and the
computational issues. For more engineering motivation of the use of
these approaches, see (1, 2] and the references therein.

The approach to mixed g computation taken in this paper involves
upper and lower bounds [3, 4] which are usually reasonably close, to-
gether with a Branch and Bound scheme to refine the bounds when
necessary. The upper bound was presented in [3] and involves minimiz-
ing the eigenvalues of a Ilermitian matrix, while the lower bound can
be tackled with a modified power algorithm [4]. Practical computation
schemes for these bounds are described in section 5 and are available in
conjunction with the p-Tools toolbox [1]. The quality of these bounds,
and their computational requirements as a function of problem size,
are explored in [5] and in section 5.3. While the bounds are usually
accurate enough for engineering purposes, occasionally they are not.
This is in contrast with the purely complex nonrepeated case, where
no examples of problems with large gaps have been found. The use of
Branch and Bound schemes to improve upon existing bounds has been
suggested by several authors (see [6, 7, 8] and the references therein).

It is now well known that real g problems can be discontinuous
in the problem data [9] and that computation for the general mixed
it problem is NP complete [10, 11, 12]. Neither result is surprising in
retrospect, and in section 4, we will consider the implications of these
results for computation of mixed p. We will argue that the discon-
tinuities have little relevance for problems motivated by engineering
applications, but the NP completeness results are extremely impor-
tant, having adverse implications for certain research directions.

Roughly speaking, the fact that mixed p is NP complete means
that it cannot be computed exactly in the worst case without entirely
unacceptable growth in computation cost with problem size. To obtain
acceptable computation one is forced either to consider special cases,
or relax the requirement for exact computation on worst-case prob-
lems. In section 4.3 we consider several special cases, including those

involved in Kharitonov’s theorem [13] and its extensions. Essentially
all of these special cases can be viewed as problems where u is equal to
its upper bound, which is relatively easy to compute. Unfortunately,
few engineering problems fit any of these special cases, so they are
of limited practical value, and the NP completeness results strongly
suggest that they cannot be usefully extended.

Since the general mixed p problem is NP complete, we do not
attempt to solve it exactly but rather obtain good bounds. Further-
more, recent results [11] suggest that even approximate methods are
also NP complete, so we will not expect good worst case behavior but
rather aim for good typical behavior. Practical algorithms for other NP
complete problems exist and typically involve approximation, heuris-
tics, branch-and-bound, or local search. Results presented in [5] and
this paper strongly suggest that an intelligent combination of all these
techniques can yield a practical algorithm for the mixed g problem.
On the other hand, routine application of any of these methods gener-

ally seems to produce algorithms with clearly exponential growth rates

even on small problems. For example, using Branch and Bound with
crude bounds (see [6]) appears to have exponential growth on typical
problems [5].

A selection of results from a fairly extensive numerical study of
these issues is presented in section 6. These numerical experiments
suggests that if one is interested in solving fairly large problems, then

one can only expect the Branch and Bound scheme to achieve a degree

of accuracy that the bounds usually get anyway, which in this case
is approximately 20%. Thus the Branch and Bound scheme is not
being used as a general computation scheme per se, but only to fix
the occasional problems for which the bounds are poor, and for these

problems to achieve the degree of accuracy which the bounds typically
get. This reinforces the results in (5] and emphasizes the necessity for

good bounds. Fortunately, computing x to within 20% accuracy is

generally quite adequate for engineering purposes.

2 Notation and Definitions

The notation used here is fairly standard and is essentially taken from

(3] and [4].

structured singular value are denoted by (M) and pxc(AM) respec-
tively. The spectral radius is denoted p(A) and pr(M) = maz{|}| :
X is a real eigenvalue of M}, with pr(M) = 0 if M has no real eigen-
values. For a Hermitian matrix M, then A(M) and Anin(M) denote
the largest and smallest (real) eigenvalues respectively. For any com-
plex vector z, then z* denotes the complex conjugate transpose and
|z| the Euclidean norm. We denote the k x k identity matrix and zero
matrix by I and Oy respectively.

The definition of j is dependent upon the underlying block struc-
ture of the uncertainties, which is defined as follows. Suppose we have
a matrix M € C*™" and three non-negative integers m,, m., and m¢
(with m := m, + m. + m¢ < n) which specify the number of uncer-
tainty blocks of each type. Then the block structure K(m., me, mc) is
an m-tuple of positive integers

K = (kl, s RE Y km,., Im‘m,.;.], ey km,—+mc7 kmr+mc+17 sy km) (1)

For any square complex matrix M we denote the com-
plex conjugate transpose by M*. The largest singular value and the



This m-tuple specifies the dimensions of the perturbation blocks, and
we require ) i~ k; = n in order that these dimensions are compatible
with M. This determines the set of allowable perturbations, namely

define

Xi = {A = block diag(8§{Tx, -, 85 T s 85T5r s - -
88 Tomamr A o AG )
87 € R, 67 € C,AY € ChmrtmetiXhmrimetiy (2)

Note that Xx € C™*” and that this block structure is sufficiently gen-
eral to allow for (any combination of) repeated real scalars, repeated
complex scalars, and full complex blocks. The purely complex case
corresponds to m, = 0, and the purely real case to m, = m¢ = 0.

Note also that all the results which follow are easily generalized
to the case where the full complex blocks need not be square, and the
blocks may come in any order. We make these restrictions in (2) purely
for notational convenicnce.

Definition 1 ([14]) The structured singular value, ux(M), of a ma-
triz M € C™*™ with respect to a block structure K(m,,m.,mc) is

defined as
=
px(M) = <A11€11\1,17{3(A) sdet(I — AM) = O}) (3)

with pux(M) =0 if no A € Xy solves det(I — AM) = 0.

In order to develop the upper and lower bound theory we need to define
some sets of block diagonal scaling matrices (which, like p itself, are
also dependent on the underlying block structure).

Qc = {A € X 8] €[-11],676; = LATAT = Ly, L L) (4)

Dx = {block diag(Dy, ..., Diytmes @idbp pmoirs s Gme i)

0< D;=DfeCF* o< d;eR} (5)

Gk = {block diag(Gh, ... 3Gy Ok p1v o0 Oky)
Gi = GF € Chxki} (6)
Dy = {block diag(D1, ..., Dimysmerdili, ym s+ s o Tin ) -

det(D;) #0,D; € C**% 4, £ 0,d; € C}  (7)

G = {block diag(g1,...,9n,,0n.) : gi € R} (8)

where n, = 3" k; and n. = n — n,.

3 Upper and Lower Bounds for Mixed p

First consider the computation of a lower bound. Note that one cannot
simply ‘cover’ the real perturbations with complex ones (and then use
the complex p lower bound) since that would include perturbations
from outside the permissible set Xy, and so would not yield a valid
lower bound. The key to obtaining a lower bound lies in the fact that
the p problem may be reformulated as a real eigenvalue maximization.
The following theorem is taken from [4].

Theorem 1 ([4]) For any matriz M € C"*", and any compatible
block structure K

M) = (M 9
e PRIQM) = jxc(M) 9)

This immediately gives us a theoretical lower bound since we have
that for any Q@ € Qk, pr(QM) < ux(M). The idea then is to find
an efficient way to compute a local maximum of the function pr(QM)
over ) € Q. Note that since this function is non-convex we cannot
guarantee to find the global maximum and hence we only obtain a lower
bound for . The practical computation of such a local maximum is
discussed in section 5.1.

Now consider an upper bound for . One could, for the purposes
of the upper bound, replace the real perturbations with complex ones

(and then use the complex p upper bound) since this would cover
the admissible perturbation set Xx. However this approach does not
exploit the phase information that is present in the real perturbations,
and hence the bound is frequently poor. The upper bound presented
in [3] does exploit this phase information and gives a bound which is
never worse than the standard upper bound from complex p theory
(see [15] for example) and is frequently much better. The following
theorem is taken from [3].

Theorem 2 ([3]) For any matriz M € C™"*", and any compatible
block structure K, suppose o, is the result of the minimization problem

o, = inf |min{a:(M"DM 4+ j(GM — M*G) - aD) <0}| (10)
geg,c a€R
594

then an upper bound for u is given by

px (M) < y/max(0, o) (11)

Since the above minimization involves an LMI (Linear Matrix Inequal-
ity), it is convex (so that all local minima are global) and hence this
bound is computationally attractive. The practical computation of the
upper bound is discussed briefly in section 5.2.

4 Fundamental Properties and Their
Implications

The problem of analyzing robustness with respect to real parameter
variations has received a great deal of attention in recent years. Al-
though there have been many different approaches to the problem, it
is only a mild oversimplification to lump these efforts into two major
research programs. One is typified by the approach taken in this paper
and may be thought of as attempting to extend the complex p the-
ory [16] to handle real perturbations. The other research program has
focused on extending Kharitonov’s celebrated result [13] on interval
polynomials to more general uncertainty structures. In this section we
will briefly try to put both of these approaches in a common context in
order to consider the implications of several recent results that are rel-
evant to both research programs. The polynomial approach can easily
be studied using the p/ LFT framework used in this paper, so we will
adopt this point of view.

We will first consider the implications of the result that the purely
real g problem is discontinuous in the problem data. We will argue
that discontinuities will not actually occur in problems of engineering
interest. Nevertheless, these results do suggest that mixed p compu-
tation may sometimes be poorly conditioned. In contrast, we will see
that the result that mixed y is, in general, an NP complete problem
has very important and direct implications for practical application of
any computational schemes. Indeed, this result strongly suggests that
entire classes of algorithms that attempt to compute mixed p will be
prohibitively expensive, even on problems of moderate size.

There are two strategies that one can adopt to deal with this
apparent intractability of mixed p computation. One possibility is to
consider special cases, and this will be the final topic of this section. We
shall see that most special cases for which there are favorable results
happen to occur on problems where it can be guaranteed a priori that
j will be equal to its upper bound, and can therefore be computed as
a convex optimization problem. This applies to the major results in
both the y and polynomial approaches. Unfortunately, these special
cases are relevant to very few problems of engineering interest, so other
strategies such as the one advocated in this paper must be adopted.

4.1 Continuity

It is now well known that real 2 problems can be discontinuous in the
problem data (see [9]). This clearly adds computational difficulties to
the problem, since any method involving some type of search (e. g.



frequency response) must address the possibility of missing a point of
discontinuity. More importantly however this sheds serious doubt on
the usefulness of real u as a robustness measure in such cases. This is
because the system model is always a mathematical abstraction from
the real world, and is only computed to finite precision, so that it would
seem teasonable to require that any type of robustness measure we use
be continuous in the problem data.

It is shown in [17] how to regularize these problems by essentially
adding a small amount of complex uncertainty to each real uncertainty.
This adds a small amount of phase uncertainty to the gain uncertainty.
It is then shown that the new mixed g problem is continuous. This
regularization seems reasonably well motivated from an engineering
point of view, where unmodeled dynamics would always produce some
phase uncertainty.

Furthermore it is shown in [17] that mixed p problems containing
some complex uncertainty are, under some mild assumptions, continu-
ous even without the regularization procedure outlined above (whereas
purely real p problems are not). This is reassuring from an engineering
viewpoint since one is usually interested in robust performance prob-
lems (which therefore contain at least one complex block), or robust
stability problems with some unmodeled dynamics, which are natu-
rally covered with complex uncertainty. Thus in problems of engineer-
ing interest, the potential discontinuity of u should not arise, although
conditioning of u computation could be a problem and needs more
study.

4.2 NP Completeness

Recent results in [10] show that a special case of computing p with real
perturbations only is NP complete. While these results do not apply
to the complex only case, new results in [12] show that the general
mixed (or real) problem is NP complete as well. The results in [12] are
based on the fact that the indefinite quadratic programming problem
given by

ax ‘*A 3 e 12
b@‘?bu“ T+ pir+cl (12)

for A € R z,p, b, b, € R, and ¢ € R can be recast as a mixed p
problem. It can be shown easily from known results that the indefinite
quadratic programming problem in (12) is NP complete, and it follows
that the mixed p problem is NP complete as well.

It is still a fundamental open question in the theory of compu-
tational complexity to determine the exact consequences of a problem
being NP complete, and we refer the reader to [18] for an in depth treat-
ment of the subject. However, it is generally accepted that a problem
being NP complete means that it cannot be computed in polynomial
time in the worst case. It is important to note that being NP complete
is a property of the problem itself, not any particular algorithm. The
fact that the mixed u problem is NP complete strongly suggests that
given any algorithm to compute p, there will be problems for which
the algorithm cannot find the answer in polynomial time. This means
that for all practical purposes even moderately large examples of such
problems are computationally intractable.

For the reader not familiar with these concepts, we offer the fol-
lowing illustration. Consider the example in table 1. There we have
tabulated two different growth rates versus problem size. For each
growth rate we have assumed that it represents two different algo-
rithms, one which can solve a size 10 problem in 10 seconds, and one
which can solve a size 10 problem in 0.01 seconds. The first growth rate
is n3 (where n is the problem size). This is a polynomial time growth
rate, and is typical of algorithms for eigenvalues, singular values etc.
The second growth rate is 2*. This is an exponential (non-polynomial)
time growth rate, and is typical of algorithms which require one to
check all the edges or vertices of some polytope.

It is readily seen that given an algorithm with a polynomial time
growth rate we can apply the algorithm to larger and larger prob-

Growth Problem Size (n)
Rate 10 20 30 40 50
0.01 0.08 0.27 0.64 1.25
seconds | seconds | seconds | seconds seconds
n3 10 1.33 4.50 10.67 20.83
seconds | minutes | minutes | minutes | minutes
0.01 10.24 2.91 124.3 348.7
seconds | seconds [ hours days years
27 10 2.84 121.4 340.5 | 3.49 x 10°
seconds [ hours days years years

Table 1: Comparison of polynomial and exponential time growth rates

lems with a reasonable increase in the computational requirements. In
contrast, for the exponential time growth rate the increase in computa-
tional requirements is quite dramatic, and for even moderate sizes the
problem rapidly becomes intractable. It is important to note that even
if the exponential time algorithm is much faster on small problems it
still rapidly becomes impractical as the problem size increases. The
overriding implication of all this is that if we wish to be able to han-
dle fairly large problems, we must have polynomial time algorithms,
regardless of the speed on small problems. The fact that the mixed
p problem is NP complete means that we cannot expect to find such
algorithms if we attempt to solve the general problem exactly for all
cases.

These results strongly suggest that it is futile to pursue exact
methods for computing g in the purely real or mixed case for even
moderate (less than 100) numbers of real perturbations. One approach
to overcoming this difficulty is to consider special cases of the general
problem, which may be easier to solve. The difficulty with this ap-
proach is that one would like the resulting algorithm to be widely
applicable to a large number of engineering problems, and it may be
that the special cases that are easily solvable are too restrictive. For
this reason we do not adopt this approach here, but rather concentrate
on the general problem. Nevertheless, since special cases have been the
focus of so much research, the remainder of this section will consider
those special cases for which computation of p is relatively easy.

4.3 Problems with special structure

In light of the NP completeness results in the previous section, it is
natural to ask if there are special cases of the mixed y problem that are
relatively easy to compute. Essentially all such cases can be shown to
involve problems where it can be verified a priori that p is equal to its
upper bound, and can therefore be computed as a convex optimization
problem. Unfortunately, these special cases are relevant to very few
problems of engineering interest.

Although it is somewhat artificial, it is useful to separately con-
sider the nominal system and the uncertainty structure (respectively P
and A in figure 1), as one can get easily computable special cases from
restrictions on each one. In the case of the nominal system, computa-
tion is easier when it is highly structured, whereas less structure on the
uncertainty makes computation easier. Of course, problems motivated
by real engineering applications typically have general, unstructured
nominal systems combined with highly structured uncertainty, exactly
the opposite of what is ideal for computation. ) )

For simplicity, consider the standard problem of robust stability
for the system in figure 1 where A is assumed to be norm bounded
by 1. The least structured A would be a single block which would be
allowed to be an arbitrary nonlinear, time-varying operator. In that
case the small gain condition is necessary and sufficient, and the test
is simply ||P|l., < 1. This test is also iff when A is restricted to be



causal, and further restricted to either linear time-varying (LTV) or
linear time-invariant (LTI).

P

Figure 1: Standard robust stability problem

Additional structure on A leads to p tests of varying complexity,
but some special cases exist when p is equal to its upper bound. If
A is block diagonal with any number of LTV perturbations then re-
cent results, obtained independently by Shamma and Megretskii, show
that the exact test for this case is equivalent to an upper bound for a
complex p problem. Also, if A consists of 3 or fewer LTI full blocks,
then p is equal to its upper bound. In general, p is not equal to its up-
per bound for more complex uncertainty structures, unless additional
structure is imposed on the P. The role of structure on P will be
considered in the next section.

4.4 Restrictions on P and “Kharitonov-type” Results

A popular research program over the last few years has focused on ex-
tending Kharitonov’s celebrated result [13] on interval polynomials, one
whose coefficients lie in intervals, to more general uncertainty struc-
tures. Kharitonov showed that one need only check 4 polynomials to
determine stability of the entire family of interval polynomials. Sev-
eral additional results have since been proven for other special cases,
such as polynomials whose coefficients are affine in some real parame-
ters (see [19] for example), and the solutions typically involve checking
the edges or vertices of some polytope in the parameter space. It can
be shown that restricting the allowed perturbation dependence to be
affine leads to a real i problem on a transfer matrix which is rank one.
Note that this “rank one” assumption is very restrictive. Typically
robustness problems motivated by real physical systems do not satisfy
this assumption.

The rank one mixed y problem is studied in detail in [20]. The
authors develop an analytic expression for the solution to this problem,
which is not only easy to compute, but has sublinear growth in the
problem size. They are then able to solve several problems from the
literature, noting that these problems can be treated as special cases
of “rank one y problems” and are thus “relatively easy to solve”. Even
the need to check (a combinatoric number of) edges is shown to be
unnecessary.

This rank one case can also be addressed within the framework
developed here. The following theorem gives a solution to the rank one
mixed p problem.

Theorem 3 ([21]) Suppose we have a rank one matrizx M € C**",
then (M) equals its upper bound from theorem 2.

Thus for rank one problems u equals its upper bound and is hence
equivalent to a convex problem. There are additional cases where p is
equal to its upper bound, but they are less elegantly characterized.
This theorem reinforces the results of [20] and offers some insight
into why the problem becomes so much more difficult when we move
away from the “affine parameter variation” case to the “multilinear”
or “polynomial” cases [7]. These correspond to p problems where A
is not necessarily rank one, and hence may no longer be equal to the
upper bound and so may no longer be equivalent to a convex problem
(note that there exist rank two matrices for which p does not equal
its upper bound). This analysis underlines why there are no practical
algorithms based on “edge-type” theorems, as the results appear to
be relevant only to a very special problem. Furthermore, even in the

very special “affine parameter case” there are a combinatoric number
of edges to check.

5 Practical Computation of the Bounds

The theoretical bounds described in section 3 form the basis of our
computation scheme. However a certain amount of reformulation is
required before they can be implemented in an efficient manner, which
exploits the structure of the problem. This is described briefly in the
remainder of this section and is presented in greater detail in [22].
The algorithm has been implemented in software as a Matlab function
(m-file). This has been on f-test at several industrial and academic
sites, and is currently available in a test version in conjunction with
the p-Tools toolbox. We also present some numerical experience with
the upper and lower bound algorithms, which shows that while they
are far from optimal, they serve to demonstrate the practicality of this
approach, and should thus motivate more refined algorithms.

5.1 The Lower Bound

In order to compute a lower bound for 1 we need to find a local max-
imum of problem (9) as discussed in section 3. It turns out that this
can be done efficiently by means of a power iteration. The iteration
scheme usually converges fairly rapidly and each iteration of the scheme
is very cheap, requiring only such operations as matrix-vector multi-
plications and vector inner products. The scheme tested here is a very
simple power iteration, and does not converge on all problems, but
in such cases one still obtains a candidate mixed perturbation from
the iteration scheme. From this one can compute a lower bound (pro-
vided that the mixed p problem contains some complex uncertainty)
by simply wrapping in the real perturbations, and then evaluating the
spectral radius of the associated complex u problem, scaled by the
candidate complex perturbations. The theoretical development of the
power iteration, together with some aspects of its implementation, is
fully described in [4] and we will not go into any of the details here.

5.2 The Upper Bound

Since the upper bound from theorem 2 is convex, one could tackle
it using a variety of convex programming techniques. For instance
we know that gradient search methods will lead us to the minimum
eventually, although they may be slow (although the upper bound
problem (10) is not in general differentiable if the maximum eigenvalue
is repeated, it is possible to compute a generalized gradient which gives
a descent direction). We would like to exploit the specific structure of
the problem in order to speed up the computation. In particular we
can reformulate the problem via the following theorem.

Theorem 4 ([22]) Suppose we have a matriz M € C™*™ and a real
scalar B > 0, then there ezist matrices D € Dx,G € Gg such that

X(M*DA1+jum1—ArG)—ﬂ?D)go (13)

if and only if there exist matrices D € D, G € Gk such that

A bDMD-' . ’
7 ((1 + &% (—ﬂ— - jG) I+ GZ)'%) <1 (14)
It is clear from this that as an alternative to carrying out the mini-
mization in (10) we could compute the ‘minimum’ 8 > 0 such that

nf @ <(1 eoR <%)—i = ,G) (I+ 02)-1-> <1 (15)
DE'ﬁ(,GEC( ﬂ

Note that the theoretical equivalence of the two problems breaks down

at # = 0 (and so for these cases strictly speaking there is no minimum

) but this presents no problem for a practical computation scheme

since we merely quit if the upper bound falls below some prespecified

tolerance (which can be arbitrarily small). Each of these two different



formulations of the upper bound problem has its own advantages. The
problem statement from (13) has the advantages that it is linear in
the matrices D and G, and is convex (and hence one will not have
problems associated with local minima). The problem statement from
(14) has the advantages that one is trying to minimize the norm of a
given matrix (which offers some numerical advantages), that D) enters
the problem exactly as in the standard complex y upper bound, that
G enters the problem in a balanced symmetric fashion, and that G is
now a real diagonal matrix.

The upper bound algorithm implemented here works by initially
tackling the problem in the form of (14). Here we can use some methods
from the complex u bounds, together with various other techniques, to
obtain a fairly good estimates of D,G and B. These are then converted
into an initial guess for the problem in the form of (13) and the algo-
rithm then proceeds to improve on these. This is covered in greater
detail in [22].

5.3 Algorithm Performance

The main issues we are interested in, with regard to the algorithm
performance, are the computational requirements of the algorithm,
and the accuracy of the resulting bounds. We are interested in the
typical performance of the algorithm, rather than the worst case (see
the discussion in section 4.2), and so we examine these properties by
running the algorithm repeatedly on a class of random problems, and
collecting statistical data. The generation of test matrices, and the
precise nature of the tests, are discussed in detail in [22].

One test performed was to examine the average computational
requirements for the algorithm versus matrix size, and the results are
shown in figure 2. The test problems had block structures consisting of
all scalar uncertainties, with 90% of them chosen as real and the rest
complex (although the results are typical of other block structures).
The same data for the appropriate complex g problem is shown for
comparison. The results were obtained running Matlab on a Sparc
1 workstation, and it can be seen that we can reasonably expect to
handle problems of size 10 in about 10 seconds, up to problems of size
50 in about 2-3 minutes.
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Figure 2: Typical computation requirements versus matrix size for
mixed-g problem (solid) and complex-g1 problem (dashed).

It can also be seen that the (experimental) growth rate in compu-
tation time for the existing implementation is approximately n?. This
is probably an artifice of the implementation in Matlab, which is an
interprative language. A more realistic measure of the computational
growth rate is in terms of total floating point operations (flops). If
this measure is adopted then it is seen that the (experimental) growth
rate in flops is approximately n3. In any case the algorithm growth
rate appears reasonable whether measured in terms of time or flops
required.

Another set of tests performed was aimed at evaluating the ac-
curacy of the bounds. This time we compared the upper and lower
mixed x bounds, and also the mixed y and complex y upper bounds.

The complex p bounds were obtained by simply replacing all the real
perturbations with complex ones, but without changing the matrix.
Thus the complex upper bound is strictly larger than the mixed upper
bound. Some results from these tests are shown in figure 3. It can be
seen that the bounds are reasonably tight, even for the largest (n = 50)
problems. Note also that we have a fairly wide spread of values for the
gap between complex p and mixed p.
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Figure 3: Typical ratios of mixed-u lower to upper bounds, and mixed-
i to complex-p upper bounds, for matrices of sizes 10 (solid), 20
(dashed), 30 (dotted), and 50 (dashdot).

5.4 Practical Examples

Whilst the results from the previous subsection are very encouraging,
it is the algorithm’s performance on actual engineering examples that
is the real issue. A number of interesting applications of the software
to problems arising from real physical systems have already been un-
dertaken. The control design of a missile autopilot is considered in [23].
The software is used to examine the robustness (in performance) of the
control design to perturbations in Mach number (real), angle of attack
(real), and unmodeled dynamics (complex). This results in a mixed p
problem with two repeated scalar real parameters and three full com-
plex blocks. The robust performance y plots for this problem, and the
associated complex j problem (simply ‘covering’ the real uncertain-
ties with complex ones), are shown in figure 4. It can be seen that
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Figure 4: Robust performance g plots for the missile autopilot problem.

the mixed . bounds are quite different to the complex p bounds, and
the performance predictions for different controllers were also found to
be different. It was found that the controller/performance predictions
from the mixed p bounds were borne out by the simulations,

Control of a flexible structure is considered in [24], and the robust-
ness of the design is evaluated with respect to variations in the natural
frequencies of the structural modes (real), as well as unmodeled dy-
namics (complex). This results in a mixed g problem with five scalar
real parameters and three full complex blocks. The robust perfor-
mance g plots for this problem, and the associated complex p problem
are shown in figure 5. Interestingly in this case, because of the way the
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Figure 5: Robust performance u plots for the flexible structure prob-

lem.

uncertainties entered the system, the mixed and complex bounds are
seen to be very close. The control design predictions were verified in
simulation and experiment. For these (and several other) examples the
software worked well, providing tight bounds for the associated mixed
4 problems.

5.5 The Next Generation of Algorithms

Note that in the previous subsections we encountered problems (both
randomly generated and practically motivated) where the values of
mixed g and complex g could be far apart or close together. Since
it is hard to know a-priori which case one will encounter it is impor-
tant to have good performance from both the upper and lower bound
algorithms.

Recall that the lower bound takes the form of a power iteration,
whose convergence is not guaranteed in all cases. It is well known that
the convergence properties of standard eigenvalue and singular value
power algorithms (which can be obtained as special cases of this algo-
rithm) can be improved by inverse iteration, and similar adaptations
to the mixed p power algorithm are being investigated. Preliminary
results have shown an improvement in the convergence properties, and
it is hoped that further refinements will enable the convergence to a
local maximum of (9) to be guaranteed [25].

The mixed p upper bound (in the form of (10)) can be viewed as
a special case of a class of LMI problems. The solution of LMD’s is a
subject of much research interest right now [26), since they appear in
many control problems. This algorithm represents a first attempt at
solving one particular LMI. As more refined algorithms for the solution
of LMI’s appear, then they can be used to improve the y upper bound
computation.

Note that all the previous tests were aimed at evaluating the typ-
ical performance of the algorithm, and it appears that the algorithm
is performing well for most problems. This does not mean however
that one cannot encounter mixed yp problems where the gap between
the upper and lower bounds is large, and it can be seen from figure 3
that a few such cases were found. Furthermore it is possible in fact to
construct matrices for which the gap between mixed p and the (theo-
retical) upper bound from theorem 2 is arbitrarily large (regardless of
the computation method). For these cases one must consider improv-
ing the bounds themselves. A promising approach is to use the existing
bounds as part of a Branch and Bound scheme, which iteratively refines
them. This is discussed in the following section.

6 Branch and Bound

The basic idea behind Branch and Bound schemes, in the context of
the mixed g problem, is that one has some algorithm for computing
upper and lower bounds for mixed y, but the bounds may be far apart.
In order to refine the bounds one may ‘chop’ the subspace of real
parameters into two subdomains and then evaluate the bounds on each
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subdomain (branch). One thus obtains upper and lower bounds for
each subdomain of the partitioned space, and by choosing the largest
of each of these we obtain new upper and lower bounds for the original
problem. This process is then repeated as often as necessary, to refine
the bounds as accurately as desired.

It is immediately apparent that one has the potential to encounter
problems with exponential growth rates using this approach, and in
fact we can construct problems which exhibit this behavior. This is
not at all surprising since this scheme provides us with an algorithm
to compute guaranteed bounds for mixed g, which we know to be an
NP hard problem. The real issue is whether or not we can produce
a “practical” scheme, whose typical computation time is polynomial
(despite the fact that the worst case computation time is exponential).
This issue is pursued in the remainder of this section and is treated in
greater depth in [27].

In order to address this problem one must consider the tradeoff
between the computational cost versus accuracy of the bounds them-
selves, for any given sub-problem, and also the amount of computa-
tional cost one is prepared to pay in order to evaluate a good direction
to chop the remaining subspace. A preliminary examination of these
questions was carried out in [5], and the results strongly suggest that
for a practical Branch and Bound scheme the methods for comput-
ing the bounds and the chopping criterion are absolutely critical to
the performance on even medium sized problems. One is prepared to
spend a high computational cost on both of these, provided it is still
polynomial time, since one is potentially avoiding exponential time
growth in the behavior of the Branch and Bound scheme (note that if
any branch yields no improvement in the bounds then the subsequent
computation can be doubled, since the same computation may have
to be performed for each branch). Experimental results pertaining to
these issues are presented in [5], and (in greater detail) in [27].

We would like to know what kind of performance level we can
expect to achieve from a Branch and Bounds scheme. It is clear from
the above results that we need to use sophisticated bounds (despite
their computational expense) if we expect to get any kind of high
performance scheme with reasonable computational requirements for
fairly large problems. In order to examine the properties of such a
scheme we implemented a Branch and Bounds scheme using the best
currently available bounds (including a preliminary version of a new
lower bound from [25]). This was then used to collect statistical data
on the performance, by running the scheme repeatedly on essentially
random problems (again, we are interested in typical, rather than worst
case, performance for reasons discussed earlier).

This Branch and Bound scheme was used to compute upper and
lower bounds for mixed y problems on a class of random complex ma-
trices. In order to attempt to make these problems representative of
ones we might encounter in practice, they were constructed by first gen-
erating a random state space system, and then evaluating the transfer
matrix at some frequency, usually placed approximately in the middle
of the modes. The uncertainties consisted of m, real scalars, and (ap-
proximately) %= complex scalars, where m, ranged from 2 to 64. The
results from one such batch of tests are shown in figure 6. There we
have plotted the required number of branches versus number of real
parameters for a series of Branch and Bound tests. Thus the curves
represent required computational effort versus problem size. For each
curve we have plotted the worst problem encountered from a pre-set
number of runs, where for each problem tlic requirement for conver-
gence was to reach a pre-specified tolerance between the upper and
lower bounds, as labeled on the curve. Tolerances of 1%, 5%, 10% and
20% were considered, and for any problem the run was terminated
if it failed to converge to the required tolerance within 100 branches
(hence some of the curves terminate prematurely if the next problem
size did not converge in time). Note that the graph is plotted on a log-



linear scale, so that any straight line with non-zero slope represents an

exponential growth rate.

Branches vs. Problem Size for Various Tolerances
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Figure 6: Branch and Bound computational requirements for varying
degrees of required accuracy

It is clear from figure 6 that if the tolerance is set tight enough
then the typical growth rate is unacceptable (see the 1% curve for ex-
ample). Thus as the problem size increases the required computation
quickly becomes impractical, and so we cannot expect to be able to
achieve these tolerances. Note however that for the 20% curve the
computational requirements remain modest even for the largest prob-
lems tested. Thus we can reasonably expect to be able to achieve this
level of accuracy. Fortunately this degree of accuracy is quite suffi-
cient for engineering purposes. It is important to keep in mind that
our mathematical models are only approximations to real physical sys-
tems, and the uncertainties are intended to cover the deficiencies in our
knowledge of that system. Thus it is somewhat naive to think that we
can have precise knowledge of the uncertainty levels in real engineering
problems.

It is interesting to note that for the 20% level the bounds were
usually within tolerance at the first try, so that it was usually not nec-
essary to branch at all. This suggests that if one is interested in solving
fairly large problems, then one can only expect the Branch and Bound
scheme to achieve a degree of accuracy that the bounds usually get
anyway! Thus the Branch and Bound scheme is not being used as a
general computation scheme per se, but only to fix the occasional prob-
lems for which the bounds are poor, and for these problems to achieve
the degree of accuracy which the bounds typically get. This reinforces
the results in [5] and emphasizes the necessity for good bounds.

To further illustrate this point consider the plot in figure 7. This
plot shows a mixed g computation for a problem with 4 real and 1
complex scalar uncertainties, where the initial bounds were quite poor
(85% relative gap as opposed to a typical level of less than 20%).
We have plotted the current upper and lower bounds for the problem
versus the number of branches, so that the progress of the Branch and
Bound scheme on the problem can be seen. It is readily apparent that
initially quite rapid progress is made so that in only 29 steps the new
bounds are within 20%. However it is also apparent that the progress of
the scheme slows quite dramatically after this point, so that achieving
greater levels of accuracy requires substantially more computational
effort, and rapidly becomes impractical.

The study of the use of cheap versus sophisticated bounds made in
[5] employed Branch and Bound schemes using methods from the ex-
treme ends of the spectrum. In other words the best currently available
bounds (which are quite computationally intensive) were compared to
some very crude bounds (which are cheap to compute), when employed
in a Branch and Bounds scheme. The overwhelming conclusion, as dis-
cussed earlier, was in favor of the more sophisticated bounds. In order
to examine this question more deeply we compared the use of the best
bounds we had available to the next best we could use in a Branch
and Bound scheme. The results are plotted in figure 8. The left hand
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Figure 7: Progress of Branch and Bound for a hard problem

plot was generated using a Branch and Bound scheme employing the
bounds previously discussed. We will refer to this as scheme A. The
results in the right hand plot came from a scheme employing the same
lower bound, and an upper bound obtained by covering the real pa-
rameters with complex ones, and then evaluating the complex p upper
bound. Essentially this amounts to enforcing the choice G = 0, in
(10), and so this bound is a little cheaper to compute, but not quite as
good, as (10). We will refer to this scheme as scheme B. The results
are shown for a series of mixed pu problems with 4 real and 1 com-
plex scalar uncertainties. We have plotted the relative gap between
the bounds versus the number of branches on a log-log scale. Thus
we see the progress of the Branch and Bound schemes with time, and
for clarity a number of tolerance levels between the bounds are la-
beled. Note that for scheme A all the problems reached tolerances of
10% within 6 branches whereas for scheme B several problems failed to
reach 10% within the allowed 100 branches. Furthermore the typical
performance for scheme B can be clearly seen to be inferior to scheme
A. It is clear that even this level of reduction in the quality of the
bounds markedly affects the performance of the overall scheme. Thus
we are led to conclude once more that the performance of the bounds
is crucial to the performance of the overall scheme, and that for a high
performance Branch and Bound scheme it is important to use the best
bounds available.
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Figure 8: Comparison of Branch and Bound schemes

7 Mixed i Synthesis

The problem of synthesising a controller which is (optimally) robust
to structured mixed uncertainty is very difficult, since the associated
optimization problem is not convex. Furthermore it seems intuitively
clear that the synthesis problem is at least as hard as the analysis
problem, which is known to be NP complete. Some exact solutions
have been presented for special cases of the synthesis problem (see
[28] for example, which reduces the “rank one” u synthesis problem
to a convex optimization problem), but these are all cases for which
the analysis problem also simplifies considerably. As yet there is no



globally optimal solution to the general synthesis problem (even in the
purely complex case), and no indication that one will be forthcoming
in the foreseeable future.

Nevertheless the (complex) p-synthesis procedure first outlined
in [29] has been successfully applied to a large number of engineer-
ing problems (see [24] for example). This procedure involves a “D-K
iteration” between computing the 1 upper bound, and solving for an
H, (sub) optimal controller (both of which are convex problems). This
procedure, which was developed for s problems involving only complex
blocks, does not guarantee to find the globally u-optimal controller, but
has often been found to work well in practice. In light of this it seems
that a reasonable approach to the mixed g synthesis problem is to at-
tempt to extend the above procedure to the mixed case, by exploiting
the new analysis tools for the mixed g upper bound described in the
preceding sections. This is a direction of current research.
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