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THE TENSOR PROPERTIES OF
DIELECTRIC CRYSTALS
AND THEIR RELATIONS TO
THE CRYSTAL SYMMETRY

CHEN GANG*

INTRODUCTION

The aim of following lectures is to show how to study the subject rather than to serve:
. as areference work containing all the conclusions, in other words, only the methods but not the:
results are concerned here, if some results shown up, they just play the role of giving examples.
of how the methods are used.

Tensors are the majorly used mathematics in these lectures, and the treatment of crystal’
symmetry is limited to the 32 point groups, since only the macroscopic physical properties.
are dealt with. Also, only the properties of dielectric crystals are treated here, the conductivity
and magnetic properties are excluded because being transport phenomena, they have the com-
plexity of magnetic groups which are beyond our mathematic and symmetry bases used in
these lectures.

I should like to give the courses according to the following sequence:

(1) Tensor transformations and definition of tensors.

(I1) Elementaries of tensor mathematics.

(IIT) Symmetry properties of tensors (Intrinsic symmetry of tensors).
(IV) Point groups and crystal classes, crystal systems.

(V) Neumann’s Principle.

(VI) Tensor quantities from Ist- to 4th-rank.

1. Ist-rank polar tensor property.

2. 2nd-rank polar tensors.

3. 3rd-rank polar tensor properties.

4. 4th-rank polar tensor properties.

5. 2nd-rank axial tensor property.

6. Fourth-rank axial tensor property.

(VIDThermodynamics of dielectric crystals. _

The attempt at comprehensiveness has been made to include 2 more topics on “Tensoz:

* EERA, RIERTVAREBR. 1988E10A HERRBELS LR, EFRBITERIE—A.
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properties in the cyclic axes frames” (Appendix A), and “The group theoretical me thod
for determination of non-zero independent components of tensor properties of crystals”
(Appendix B).

NOTES ON THE COURSE )

The field of tensor properties of crystals is probably the oldest chapter of solid state
‘physics, it deals with the macroscopic physics of anisotropic solids. This knowledge follows
from a purely macroscopic formulation of the physics of anisotropic media. Such a formula-
tion, built on the combined symmetries of physical processes and of crystal structure, effectively
-establishes the framework within which all microscopic theories must operate. But it is largely
bypassed in introductory courses, and is often neglected even in advanced presentations of
solid state physics, which nowadays very much emphasizes the microscopic description of
‘phenomena. Of coutse, crystal physics at the macroscopic level is equally importantin its own
right in dealing with the great variety of new phenomena.

In recent years, the progresses of science and technology show that more and more ma-
‘croscopic properties of anisotropic media get in use on the frontiers of different fields, such
as laser techniques, electrooptics, acoustooptics, the technique of recording and displaying
information, and various new functional devices are being made of crystals to meet the
rapid needs of scientific and technological developments.

So, a systematic study of macroscopic properties of crystals will not only help to deepen
'the microscopic formulation of phenomena, but also will benefit the proceeding of science
and technology.

The necessity of introducing tensors to describe the macroscopic physical properties of
‘crystals:

In the traditional theories of physics, the properties of matter are defined by relations
between measurable quantities, i.e. the relations between the response quantities of the ma-
terial to applied forces or fields and the quantities that characterizing the latters. For example,
if the relation is linear, we can write

B=CA (0.1)
‘where B—the response quantity, 4—the applied field quantity, and then C—the physical
property of that material.

There may be two cases: The representation of the properties of matter doesn’t de-
pend on the direction of measurements, such non-directional physical quantities are called
as scalars, and by giving a single number a scalat is completely specified, For example,
-density is defined from a relation between mass and volume, and mass and volume are measured
without reference to direction, so, accordingly, density is a property that does not depend
oaq direction, such a property is taken as an isotropic property. The other case is that the re-
presentation of the properties of matter does depend on the direction of measurements. Under
this condition, a single number—scalar will not suffice, a set of number is needed instead.
‘When electric field E applies to a crystal, as the response to the field, electric polarization P
is induced inside the crystal. Since electric field and electric polarization are all quantities
characterized not only by their magnitudes but also by their orientations, the dielectric su-
sceptibility—defined by the relation between E and P, is a property does depend on direction,
that is to say, for cryatals, X is anisotropic.

If all the pbysical properties of a material are scalars, then we say that the material is
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isotropic. Most crystals are anisotropic. For a few properties, such as density, all crystals
are isotropic. Cubic crystals happen to be isotropic for a certain number of other properties
as well, such as the dielectric constant g, the dielectric susceptibility X, and the index of
refraction n, etc. But for elasticity, photoelasticity, and certain other properties, cubic cry-
stals are in fact anisotropic. So, cubic crystals are not isotropic media. The lower the crystal
symmetry, the fewer number of isotropic properties the crystal can possess.

To represent the isotropic properties of matter, scalars are sufficient. But, in a crystal,
for characterizing the anisotropic properties, TENSORS—a finite set of coefficients that obey
the transformation laws under the transformations of axes of reference—are to be used, since
tensors can describe both the magnitudes and the directions of the anisotropic properties.

Field quantities and matter quantities:

In Equation (0.1), the quantities A,B,C can be of two kinds. One of them we call as
field quantities, such as stress, strain, electric field, electric polarization .... They only re-
present the external influences or the responses induced inside the material, they are also called
as field tensors. Field tensors don’t represent the properties of matter, they possess only the
symmetries of the physical processes which they represent. The other kind of quantities are
called as matter quantities, or matter tensors, such as density, dielectric constant, piezoelectric
modulus.... They represent the properties of material, and they possess not only the symmetr-
ies of physical processes but also symmetries of crystal structures.

The formulation of crystal physics based on these principles of symmetry determines
primarily the necessary framework of all possible interactions. It separates allowed and
forbidden effects, and it specifies the form of the allowed effects in a crystal of given symmetry.
‘Our approach focuses on the preliminary aspects of determining the classes of crystals to which
the search for any particular effect can be restricted, and the form of the response by which
this effect is to be identified.

This aspect of crystal physics covers a sufficiently large ground to justify development in
its own right. Surprisingly enough, it is not a closed subject. The systematic exploration of
highly anistropic crystals is just beginning, and some of the effects predicted in such crystals
remain to be discovered experimentally. On the other hand, the recent history of crystal phy-
sics includes instances of “forbidden” effects that were found to be “allowed” after more care-
ful examination of the inherent symmetries governing the interaction or of the structure sym-
metries of crystals. Crystal physics has had its share of “symmetry violations” and of the
new worlds opened up by each such discovery. There is good reason to believe that the full
intricacy of the interactions possible in crystals is yet to be discovered.

L. Tensop transformations and definition of tensors.

Most of the externally applied influences and the responses of the crystal and the corres-
ponding physical properties of the crystal are represented by quantities that are direction de-
pendent. All such directional aspects are readily described by a mathematical formulation
called tensor which is composed of a set of orderly components.

Before an exact definition of tensor can be given, we’ll draw some preliminary knowledge
of it here:

(1) According to the number of components needed in determining a tensor, tensors can
be said to be of zero rank, the 1st rank, the 2nd-rank, ... , and we already know that tensors
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of zero rank are scalars which are direction independent, and tensors of the Ist rank are vectors:
which have 3 components in Cartesian coordinate system. As it will be revealed later soon
that tensors of the 2nd rank have 9 components, ..., and tensors of the mth rank have 3™
components. So, in this way, we can summarize as following:

Table 1.1
Rank of the number of .
examples of quantities
tensor m components

0 3°=1 density, temperature
1 3=3 electric field, electric polarization, pyroelectric coefficient
2 3:=9 stress, strain, dielectric const.
3 33=27 piezoelectric modulus, linear electro-optic coefficient
4 34=381 elastic coeff., photo-elastic coeff.

(2) A proper description of the physical properties of a crystal must be invariant under
the operation of the symmetry group of this crystal. In order to assure the above requirement,
we must establish how the description itself transforms under the operations relating different
coordinate systems. This is the reason why we talk about tensor transformations.

I. 1. Transformations of coordinate axes.

Tensor transformation is closely related to that of the coordinates and makes use of the
same basic description quantities.

Let us choose an orthogonal system of axes for the coordinate system O (not necessarily
identical with crystal axes of symmetry); O is described by 3 orthogonal basis vectors e,

e;ee5=03,; (1.1a)
{e,- Xej=u;;.e. (if right-handed) (1.1b}

where §;; is the Kronecker delta: (=1, for i=j,
{=0, for ixgj (1.2)

and u,,, is the antisymmetric triple product:
=1 for i, j, & in cyclic order;
=—1 for i, j, k in reverse order (1.3)
=0 if 2 or more indices are the same
Another orthogonal system O’, with a set of basis vectors e;’, rotated with respect to
O and left the origin and length measuring unit unchanged in the 2 systems, is related linearly
to the O system:

3
e"=21a'.je, (i =1,2,3) (1.4)
=
We now leave out the summation sign:
e"=a,-jej (ij:1,2,3) (1.5)

and introduce the Einstein summation convention: when a letter suffix occurs twice in the same

term, summation with respect to that suffix is to be automatically understood. The coeffi-

cients a,4 are the direction cosines between the old and new vectors (see Fig. 1. 1)
a;=e/e; (1.6}



1If we represent the basis vectors by columns and the nine coefficients a,; as a square array

=
a;; Gy Gy

(A)=(a;5)=| G @ ax ()]

dg; Qzy Qgg
.and use the rules of matrix multiplication, Eq. (1.5) can also be expressed in the form

51 4 Gz Q3 €
’

€ = Qg1 Qg Qg3 €3 (1.8)
’

€3 Q3 Qagy Ugg €3

‘The square array of transformation parameters (g, ) is called the transformation matrix be-

Fig. 1.1 Transformation of axes
tween the two coordinate systems O and O, and has a few well-known properties as
following:

485, =0,;
B { 1 (i=j), normalization, (1.9)
47 1lo (i=j), orthogonality. (1.10)

In general, a;;¢ay;. Because of the above relations, only three of the nine parameters in Eq.
{1.7) are truly independent.
The inverse transformation (ay;) has the relation.
a,*;'=aj,- ) (1.11)
to the former one.

The matrix (a;;) which defines the transformation from O to O’ contains information about
the sense of the new coordinate system. It is easy to show that there exists two cases. On
the one hand, if the transformation is a proper rotation, the determinant |q,;| has the value
-1, and O and O’ have the sense: both are either right-handed or left-handed. On the other
hand, if the transformation is an improper rotation (including inversion, reflection and rotation-
inversion), |a;;] =—1, and the sense of O’ is opposite to that of O, that is to say, if O is
right-handed, then O’ is left-handed, or vice versa.

Note: (*) The relation between the direction cosines of the axes may be shown by drawing up the following
table: ' '

L1 € e O—old one
&' an Qs a3
New one—O’ e, | a, gy s,
&' | ay Q3 [



If we have another transformation from O’ to O” after the transformation from O to O,
and the transformation matrix defining that from O’ to O” is (B)=(b;;), then we can say
that O transforms directly to O* with a transformation matrix (C)=(c;;) which obeys the
multiplicatien rule of matrix:

(©O)=(B) (4) (1.12ay
or, alternatively
Cry =buau (112b)
Note that the order of the matrices in Eq. (1.12) must not be reversed, since it implies that the
transformation from O to O’ happens at first and the corresponding matrix (4) is placed behind
the matrix (B) that represents the transformation from O’ to O ” which happens after that from
O to O'. Itis easy to show that (C) also satisfies Eq. (1.9) — (1.11), if (4) and (B) both meet
the requirement of linear orthogonal rigid transformation.

I. 2. Tensor transformations:

(1) Transformation of scalars (tensors of zero-rank):

As is already known, scalars are quantities that are direction independent, and only one
number is needed to specify a scalar. Under the transformation of coordinate system, the value
of a scalar will remain unchanged, but its sign will be different according to whether the trans-
formation is a proper or an improper rotation. When it is a proper rotation, the sign of the
scalar doesn’t change, while for improper rotation the sign changes. We express as

P'=+¢ (1.13)
where the quantity with a (’) is corresponding to the scalar after the coordinate axes transfor-
mation. . :

Among the physical quantities of dielectric crystals we’ll deal with later, the rotatory power -
which describes the optical activity of crystal is an example of that kind of scalar which will
change its sign under an improper rotation.

The scalars that do not change sign under any kind of transformation are called “true
scalars”, and those changing signs under improper rotations are called ‘“pseudo scalars”,
or “axial scalars”. '

(2) Transformation of vectors (tensors of the first-rank), or, more precisely, transfor-
mation of vector components.

Suppose now there is a vector » connecting the origin of the coordinate system O and a
fixed point P in a certain crystal. If the point P has the coordinates (x;,x,,X;) in O, they are
given by the relation to the vector »:

r=Xx.6;+ X5+ X563 (1.149)
so, the coordinates of point P are also the components of vector ». We now want to ask how
do the x;s transform into a new set of x,’s when the coordinate system transforms from O
to O’? If the transformation from O to O’ leaves the crystal and the point P unmoved, then
in O’, it must be the same vector » but with a new set of coordinates (x,’,x,’, x;):

r=x"e, +x,'e,' x x;'e;’ (1.15)
Take the scalar product of e,” with (1.14) and (1.15), and we obtain
e (xje;)=e/+(xe,")
and make use of Eq. (1.1) and (1.6), we arrive at the final result
x' =agx; - (i,j=1,23) (1.16)
Hence we have shown that the coordinates of a point or the components of a vector
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transform exactly like basis vectors of the coordinate systems.

Fig. 1.2 Transformation of vector components (coordinates of a point).

For the reverse transformation and by referring again to Eq. (1.6), we have
xXo=ayx;' (i.j=1,2,3) (1.17)
Note that in the O to O’ transformation, ‘new’ (with’s) in terms of ‘old’ (without’s), the dummy
suffices occur in neighbouring places. In the reverse transformation, they are separated.

Up to this point we have not made any distinction among vectors, butin fact we can divide
the vectors into two kinds: The one which transforms exactly according to Eq. (1.16) under
any kind of transformation of coordinate system and can be represented without ambiguity
by an arrow pointing in a certain direction like that shown in Fig. 1. 2 is called polar vector or
true vector. The examples of this kind are forces, lineary velocity, the strength of electric field
and many other polar vectors.

Another kind of vectors such as angular velocity, angular momentum, mechanical torque, .
etc., which are represented by straight lines with definite orientation and screw motion attached
to them as shown in Fig. [. 3b, the length of the line is in proportion to the magnitude of the
vector and the direction of the vector is given by the orientation of the line and the sense of the
screw motion. If the axes are right-handed, then a positive sense of rotation will attach to the
line given by a right-handed screw motion, and the same for left-handed axes. These-
vectors are called axial vectors (or pseudo-vectors). From Fig. 1. 3, we see that there is a
difference between polar and axial vectors. In a plane perpendicular to the line, reflection
of polar vector reverses its direction but that of axial vector remains unchanged. On the.
other hand, reflection in a plane parallel to the line has the opposite effect.

(a) /*
02
-/ (b)

Fig. 1.3 Symbolic representation of vectors. (a) a polar vector, (b) an axial vector

As for the transformation of vector components, there is also a little different between them._
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If transformation from O to O’ is a proper rotation, the axial vector components transform
-as the same as the polar ones, but if the O to O’ transformation is an improper rotation, then
‘the axial ones transform as the negative of the polar ones, that is to say, for axial vectors we
must write

x'=|ay | ayyxy==tayx; (1.18)
1nstead of Eq. (1.16), where () and (- ) signs correspond to proper and improper rotations
of O to O’ transformation respectively. And also we must have

Xg=tazxy (1.19)
instead of Eq. (1.17) for the reverse transformation. ‘
Consider now an example, a mechanical torque L=r X F, with three components as
Ly=ryFy—rgFy, Ly=rgFy—rF;, Ly=nrF;—ryFy,
‘where r, F are all polar vectors. We can easily prove that if O to O’ transformation is a rota-
‘tion ar about x, axis, then the transformation of Lis: L,"=—L,, Ly’=— L, Ly’ = — L, the same
-as that of  and F, and satisfies Eq. (1.16). But if O to O’ transformation is an inversion through
the origin, then L transforms as: L,'=L,, L,’=L,, Ly’=L,, justthe opposite to what r and
-F do, therefore L transforms as the negative of Eq. (1.16), or we can write
L’=-a;L;=8;L;=L,.

“This can be shown in Fig. 1. 4, if O is right-handed then the sense of screw motion of L is

z
e 2 =%
1y
’ [} Q/
_‘L.,_: ’XL ] 4;7_
< 0 7L'),
/3
Z
v/

zé: -X,
{Fig. 1.4 Inversion changes the hand of system but not the sign of axial vector.

positive when it is right-handed screw motion, after inversion, O’ becomes left-handed
and the positive sense of L’ then also must be left-handed screw motion.

We also can take Eq. (1.18) as. including the meaning of (1.16), since for polar vectors,
the sign in (1.18) must be always (4 ) either that the O to O’ transformation is proper or
improper.

(3) Transformation of the components of a 2nd-rank tensor.

a) An example of a so called the 2nd-rank tensor:

If an electric field given by the vector E acts in a crystal, an electric polarization P
induced. Since for crystals, the dielectric susceptibilities are in general anisotropic rather
than isotropic, so the directions of E and P are not parallel but diverge from each other
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