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Preface

... dans ce meilleur des [modéles] possibles ... tout est au mieux.
Candide (1759), Chapitre I, VOLTAIRE

The working title of the book was a bit long, Optimality Theory of Experi-
mental Designs in Linear Models, but focused on two pertinent points. The
setting is the /inear model, the simplest statistical model, where the results are
strongest. The topic is design optimality, de-emphasizing the issue of design
construction. A more detailed Outline of the Book follows the Contents.

The design literature is full of fancy nomenclature. In order to circumvent
expert jargon I mainly speak of a design & being ¢ -optimal for K'6 in E, that
is, being optimal under an information function ¢, for a parameter system
of interest K'6, in a class = of competing designs. The only genuinely new
notions that I introduce are Loewner optimality (because it refers to the
Loewner matrix ordering) and Kiefer optimality (because it pays due homage
to the man who was a prime contributor to the topic).

The design problems originate from statistics, but are solved using special
tools from linear algebra and convex analysis, such as the information matrix
mapping of Chapter 3 and the information functions ¢ of Chapter 5. I have
refrained from relegating these tools into a set of appendices, at the expense
of some slowing of the development in the first half of the book. Instead, the
auxiliary material is developed as needed, and it is hoped that the exposition
conveys some of the fascination that grows out of merging three otherwise
distinct mathematical disciplines.

The result is a unified optimality theory that embraces an amazingly wide
variety of design problems. My aim is not encyclopedic coverage, but rather to
outline typical settings such as D-, A-, and E-optimal polynomial regression
designs, Bayes designs, designs for model discrimination, balanced incomplete
block designs, or rotatable response surface designs. Pulling together formerly
separate entities to build a greater community will always face opponents
who fear an assault on their way of thinking. On the contrary, my intention
is constructive, to generate a frame for those design problems that share
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vi PREFACE

a common goal. The goal of investigating optimal, theoretical designs is to
provide a gauge for identifying efficient, practical designs.

Il meglio e I'inimico del bene.
Dictionnaire Philosophique (1770), Art Dramatique, VOLTAIRE
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Outline of the Book

CHAPTERS 1, 2, 3, 4: LINEAR MODELS AND INFORMATION
MATRICES

Chapters 1 and 3 are basic. Chapter 1 centers around the Gauss—-Markov
Theorem, not only because it justifies the introduction of designs and their
moment matrices in Section 1.24. Equally important, it permits us to define
in Section 3.2 the information matrix for a parameter system of interest K'6
in a way that best supports the general theory. The definition is extended
to rank deficient coefficient matrices K in Section 3.21. Because of the dual
purpose the Gauss-Markov Theorem is formulated as a general result of
matrix algebra. First results on optimal designs are presented in Chapter 2,
for parameter subsystems that are one-dimensional, and in Chapter 4, in
the case where optimality can be achieved relative to the Loewner ordering
among information matrices. (This is rare, see Section 4.7.) These results
also follow from the General Equivalence Theorem in Chapter 7, whence
Chapters 2 and 4 are not needed for their technical details.

CHAPTERS 5, 6: INFORMATION FUNCTIONS

Chapters 5 and 6 are reference chapters, developing the concavity properties
of prospective optimality criteria. In Section 5.8, we introduce information
functions ¢, which by definition are required to be positively homogeneous,
superadditive, nonnegative, nonconstant, and upper semicontinuous. Infor-
mation functions submit themselves to pleasing functional operations (Sec-
tion 5.11), of which polarity (Section 5.12) is crucial for the sequel. The most
important class of information functions are the matrix means ¢,, with pa-
rameter p € [—oo;1]. They are the topic of Chapter 6, starting from the
classical D-, A-, E-criterion as the special cases ¢g, ¢_1, P—_oo, respectively.

xxi



xxii OUTLINE OF THE BOOK

CHAPTERS 7, 8, 12: OPTIMAL APPROXIMATE DESIGNS AND
EFFICIENT DISCRETE DESIGNS

The General Equivalence Theorem 7.14 is the key result of optimal design
theory, offering necessary and sufficient conditions for a design’s moment
matrix M to be ¢-optimal for K'6 in M. The generic result of this type is
due to Kiefer and Wolfowitz (1960), concerning D-optimality for 6 in M (E).
The present theorem is more general in three respects, in allowing for the
competing moment matrices to form a set M which is compact and con-
vex, rather than restricting attention to the largest possible set M (E) of all
moment matrices, in admitting parameter subsystems K'6, rather than con-
centrating on the full parameter vector 6, and in permitting as optimality
criterion any information function ¢, rather than restricting attention to the
classical D-criterion. Specifying these quantitites gives rise to a number of
corollaries which are discussed in the second half of Chapter 7. The first half
is a self-contained exposition of arguments which lead to a proof of the Gen-
eral Equivalence Theorem, based on subgradients and normal vectors to a
convex set. Duality theory of convex analysis might be another starting point;
here we obtain a duality theorem as an intermediate step, as Theorem 7.12.
Yet another approach would be based on directional derivatives; however,
their calculus is quite involved when it comes to handling a composition
¢ o Cg like the one underlying the optimal design problem.

Chapter 8 deals with the practical consequences which the General Equiv-
alence Theorem implies about the support points x; and the weights w; of
an optimal design ¢. The theory permits a weight w; to be any real number
between 0 and 1, prescribing the proportion of observations to be drawn un-
der x;. In contrast, a design for sample size n replaces w; by an integer #;, as
the replication number for x;. In Chapter 12 we propose the efficient design
apportionment as a systematic and easy way to pass from w; to n;. This dis-
cretization procedure is the most efficient one, in the sense of Theorem 12.7.
For growing sample size n, the efficiency loss relative to the optimal design
stays bounded of asymptotic order n~!; in the case of differentiability, the

order improves to n~2.

CHAPTERS 9, 10, 11: INSTANCES OF DESIGN OPTIMALITY

D-, A-, and E-optimal polynomial regression designs over the interval [—1;1]
are characterized and exhibited in Chapter 9. Chapter 10 discusses admis-
sibility of the moment matrix of a polynomial regression design, and of
the contrast information matrix of a block design in a two-way classifica-
tion model. Prominent as these examples may be, it is up to Chapter 11 to
exploit the power of the General Equivalence Theorem to its fullest. Var-
ious sets of competing moment matrices are considered, such as M, for
Bayes designs, M (E[a; b]) for designs with bounded weights, M for mix-
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ture model designs, {(M,...,M): M € M} for mixture criteria designs, and
M N {¢ > A} for designs with guaranteed efficiencies. And they are eval-
uated using an information function ¢ = ® o ¢ that is a composition of a set
of m information functions, ¢ = (¢4, .., ), together with an information
function ® on the nonnegative orthant R”.

CHAPTERS 13, 14, 15: OPTIMAL INVARIANT DESIGNS

As with other statistical problems, invariance considerations can be of great
help in reducing the dimensionality and complexity of the general design
problem, at the expense of handling some additional theoretical concepts.
The foundations are laid in Chapter 13, investigating various groups and their
actions as they pertain to an experimental domain design 7, a regression range
design ¢ = 7o f~!, a moment matrix M (£), an information matrix Cx (M), or
an information function ¢ (C). The idea of “increased symmetry” or “greater
balancedness” is captured by the matrix majorization ordering of Section 14.1.
This concept is brought together with the Loewner matrix ordering to create
the Kiefer ordering of Section 14.2: An information matrix C is at least as
good as another matrix D, C > D, when relative to the Loewner ordering,
C is above some intermediate matrix which is majorized by D. The concept is
due to Kiefer (1975) who introduced it in a block design setting and called it
universal optimality. We demonstrate its usefulness with balanced incomplete
block designs (Section 14.9), optimal designs for a linear fit over the unit
cube (Section 14.10), and rotatable designs for response surface methodology
(Chapter 15).

The final Comments and References include historical remarks and men-
tion the relevant literature. I do not claim to have traced every detail to its
first contributor and I must admit that the book makes no mention of many
other important design topics, such as numerical algorithms, orthogonal ar-
rays, mixture designs, polynomial regression designs on the cube, sequen-
tial and adaptive designs, designs for nonlinear models, robust designs, etc.
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