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PREFACE

SiNoE the dlscovery of group characters by Frobeénius at the end of
the last century, the development of the theory has been so spectacu-
lar, and the theory has shown such powerful contacts with other
branches of mathematics, both pure and applied, that the madequa.cy
of its treatment by text-books is rather surprising. Indeed, until the
publication last year of Murnaghan’s treatise, The Theory of Group
Representations, there was no book which devoted itself especially to
the theory, and even Murnaghan’s work was written specifically with .
8 view to its apphcatwns to quantum theory and nuclear physies. .
It has been my purpose in writing this book to give a simple and
self-contamed exposition of the theory in relation to both finite and
‘ contmuous groups, and to develop some of its contacts with other
branches of pure ma,thema.lucs, such as invariant theory, group
theory, a,?d the theory of symmetric functions. There are three
mtroductq)ry chapters on matrices, algebra.s, and groups, so that no
specialized knowledge is required of the reader beyond that obtained
in an ordinary degree course in mathematics. Rather than to
attempt any exhaustive treatment, it has been my aim to develop
the nucleus of & theory whjch wﬂl brmg ’oo notice new problemg to be
solved. i

The blbhogra.phy gives most of the original memoirs which have
gone towards the development. of the theory, together with text-
books and authoritative references to relevant theories. I must
express my debt to Murnaghan’s book ‘(no. 9 in the bibliography)
and to two books by Weyl (nos. 13 and 14) in COmpllmg this biblio-
‘graphy. Murnaghan’s book also suggested certain additions to the
last chapter.

I have to thank Prof A. R. Rlcha.rdson for his suggestlons and’
comments concerning the writing of this book, Dr. A. J. Ward and -
Dr. A. C. Aitken for invaluable help in reading the proofs; and
Mr. H. O. Foulkes for some correotlons to the tables of characters.

D.E. L.
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p. 23. The regular matrix representation

This representation will not be simply isomorphic if there exists an element
x of the algebra for which az = 0 for all a of the algebra. The corresponding
matrix X would be identically zero. A simply isomorphic representation,-
however, may be obtained in any case by adjoining a modulus to the algebra
before obtaining the regular representation.
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MATRICES
- 1.1. Linear transformations
CoNSIDER the set of n linear equations

. .

Xy = Oy By Tyt ooty Tps
p .

Xy = Oy X1+ Qg Tat v+ 0oy T,

. x - a’nl x1+an2 x2+ +annxn=
Whmh may be written more conclsely '

Z 'pg Vg' (1-1"1')‘

The coefficients a,,, for the purposes of this book are ta,ken to
be any complex numbers. More generally, they may be taken from
any prescribed field, but the theory is simplified in the case of the
complex numbers, owing to the fact that the nth degree equation
in one variable has exactly n roots in this field; and this case is
sufficient for the purposes of this hook. For the more general theory
the reader is referred to Turnbuil and Aitken, The Theory of Gammwa,i
' Matrices (London and Glasgow, 1932).

The equations (1.1;1) are said to form a linear transformation

, in » variebles. They may be regarded as effecting a mapping of '

~ an n-dimensional space into itself, i.e., relative to any assigned
Cartesian coordinate system, the point P’ = (z4,%;,...,%,) is made
to correspond to the point P = (%,%,,...,%,). The point P’ is
uniquely defined by P. This n-dimensional space is called the carrier
apace.

~ If the determinant of the coefficients is not zero, the equations
(1 1;1) may be solved for the z,’s in the formf - :

Ty = 2, Qgp %y (1.1; 2)

and the point P is also uniquely defined by the point. P’. Such a
transformation is called non-singular; it effects a bi-uniform mapping.
The tra,nsformatlon (1 1;2) is called the inverse transformation of
(1.1;1).

T Vide any standard text-book on a.lgebra., e.g. Chl;ystal.
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1.2. Matrices i ’

The transformation is oompletely deﬁned by the n? quantities
. We therefore associate with the transformation the array of

numbers Gy @1:, vy gy
Qg1,  Qpgs  oeos Qg

Qn1s  Opas == a}m )
This array is called a mairiz, the mairiz of the transformation. We

write it shortly [a,], where s is the index of the row, and ¢ the index of -

" the eolumn from which the given element is chosen. The letters s and
¢ will in general be reserved throughout this book to indicate the row
- and the column of a matrix from which a typical element is chosen.

. Two m&tnces are said to be equal if and only 1f they are ldentmal
e, ;o [44] = [by]
lfa.ndonlylf wa = Opa foral]pa,ndq

Now let 25 = 3 bm z; be a second transformation with matrix of 58

coefficients [by]. The effect of taking the two transformations con-
secutively in order of deﬁmtlon is clearly to produce a third trans-
: formahon, = Z

: : 7]

where : ' Cig== 3 by
The matrix of this transformation is [c,,]
We therefore define the produci of two matrices by the rule

Bullou] =[Z bpag] =[ed ~ ~  @21)°
Thus if two transformations are taken consecutively, the matrix
of the combined transformation is the product of the matrices. .
From the usual rule forthe product of two determinantst we see that:
The determinant of the product of two matrices is equal to the product
of the determinants. ’
It should be noted that the product [ay][by] = [ a5 b,] is not
~in general equal to [by][ay]. Multiplication is nol commutative. Multi-
phcatlon is, however, associative, and it is ea.slly verified that

{lau)buDcx] = [aal{[bullcal}-

The matrix with unity in each position in the leading diagonal,
and zero elsewhere, i.e. the matri< [8;], where 8,; = 0 (¢ 7 j) and
' 8;; = 1, which corresponds to the identical transformation, is called
1 See Chrystal.
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the unit matrix and will be denoted by I. If it is desired to convey
the order, n2, of the matrices, it will be written I,. Clea.rly
[ag]] = I[ay] = [aat]
" If the determinant of [a], which we shall denote by |al, is not
equal to zero, then, as we have stated, there exists an inverse trans-
- formation (1.1;2), and hence a matrix [a,], such that

[au)[ax] = [aa]lae] = I.
[@s] is called the reciprocal of the matrix [a], and is denoted by
[@x]~t. In this case the matrix [a,] is said to be non-singular.
If, however, |a,| = 0, then there is no rec1proca,1 of [a,] and the
matrix is said to be singular.
In addition to multiplication we define addition for matrices by .

fhesdntle [@e]+[0a] = [+bu]-
Clearly addition is commutative and associative, and mulmphca,-
tion is distributive with respect to addition. :

Permutahon matrix —

A matrix in which each row and each column has but one non-zero .
element, which is equal to unity, is called a permulation mairiz.
Transformation (see §1.3) by a permutation matrix has the effect of
permuting the order of the rows of a matrix, and the columns also,
in the same manner. -

Diagonal matrices
If in & matrix 4 = [ay] we have
ay=0 (i #4),
the matrix is called a dm.gonal matrix. It is completely defined by
the elements in the leading diagonal, namely au, ggyses By 80 WO
shall use the concise notation

4 = diag(ay;, ags,-.. Tnn)- :
. The notation may be made even more concise, in the case where a
given element is repeated in consecutive positions, by the use of
indices to indicate repetitions. Thus

giog(IP, 2 [3) = |V
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The notation diag(4,,4,,...,4,) will also be used when the 4,
represent square matrices, this signifying that the matrices 4, are
placed in symmetric positions about the leading diagonal.

1.3. The transform of.a matrix

Consider the effect of a change of the coordinate system in the
carrier space on a transformatlon

x = 3 Gyy % .
Let Y1> Yare--» Y be the coordmates of a point relative to the new
system, with .
e Tp = 3. Cpy Yoo

the matrix [c,,] bemg non-singular. _
If y/,..., ¥, are the new coordinates of the transformed point, then

=23, Cpg¥q-

Now let the original pomt transformation referred to the new
coordinate system take the form

Yp = 2 by yq'x
The coefficients b, may be found as follows:

Ty = 3 Bpg Ty = qzr @pq Car Yr>
Tp =3 CpolYg = Z Cpg Ogr Y-

| [%:][cul = [cse][ba], \
Le. [ba] = [ea][@a)lea). (1351)
- The matrix [by] is called the transform of the mairiz [ay] by the
matriz [cy).

Clearly [a,] is the transform of [,] by the matrix [c,]-. Matrices
which are transforms of one another are called equivalent matrices.
Since they may be regarded as corresponding to the same point
transformation, but referred to different coordinate systems, equiva-
lent matrices have many properties in common. In fact a very
powerful method of finding the properties of a matrix is to find an
equivalent matrix of simpler form, e.g. diagonal, and to find the
properties of this second matrix. We shall pursue this method in
the section on the ‘classical canonical form’.
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1.4. Rectangular matrices and vectors
In a set of linear equations

@y =3 Gy %y,
* the number m, of new variables z;, may differ from the number n,
of original variables z,. Correspondingly we have a rectangular matriz
[a,] with m rows and n columns. The product of two rectangular
matrices [ay], [by] may be obtained according to the same rule
(1.2; 1) as for square matrices, but it is necessary that the number
of rows in [a,] should be equal to the number of columns in [ba-
It may be convenient to make up the number of rows or columns by
adding zeros. - el ' :
Of particular imporfance are matrices with one row, or one column.
These are called vectors. The coordinates of a point in n-space may
be formed into a vector [x,], and the transformation (1.1;1) may
" then be expressed by matrix multiplication '

[#] = [aa][2.],

a form which lends itself to great neatness of expression. -
A set of r vectors X, = [#y,), X3 = [%a),-r X, = [2,,] are said
to be linearly dependent if scalars, i.e. ordinary complex numbers,

@y, Gigyeres & cAN be found sych that '

oy Xyt Xpt ot X, =0,

Otherwise they are linearly independent. 1t is clearly impossible to

find a set of more than n linearly independent vectors of order n.
A square matrix [a,] of order n? may be regarded as composed of

| ﬂCO]-umn vectors [ad] - [A‘], !

where K # 4y =[ay]

If |a,| = O, the vectors 4, are linearly dependent, since a non-
zero solution of '

- VZ%% =0,
D agpoy =0,
za‘npo‘p = 07

may be found, treated as equations in oy, ay,..., &,. Lhis condition |
may be expressed: there is a vector [o,] such that [o][@g] = O.
If, further, the n vectors [a,,] are linearly dependent upon Jof



8 - MATRICES ‘ Chap. I

* the vectors, then there will be n—j lmea.rly mdependent vectors
[zl (1 < g < n—-J) such that =

[ogllas] = O,
and the matrix [a,] is said to be of ramik J- : ' :
. The condition for this is clearly that all (j4-1)-rowed minors of
the matrix [a,] have zero determinant, and hence is the same as the -
condmon that the row-vectors [ay] should be linearly dependent
upon j. of these. In this ease we have also that (r—j) linearly inde-
pendent row-vectors [§,,] can be found such that

[ad][ﬁ:p] =0 (1 < P\\ ”—J) ,

There is no difficulty in proving that the rank of a transform of
a matrix is the same as the rank of the ‘matrix. More generally, if -
X and Y are non-singular matrices, 4 and XAY have the same
Ar'ra.nk for if [ﬂ‘,,] is a rectangular matiix mth (n—j) columns and -

‘l[ﬂu] = [ﬁd]
then if - A[ﬂ,,] =0,
also ' XAY[By] = 0.

‘1.5. The characteristic equation of a matrix

Let A = [a,] be any square matrix of order 2, and I the unit
matrix of the same order. If A is a variable scalar, the matrix [A]—4]
is singular for certain fixed values of A called the characteristic roots
of the matrix 4. These values may be found by equatlng to zero -
the determinant V‘ I—-A4|=o. '

We obtain the charactenetw equation
A"—a )\"-1+a‘,,\"~= A (=1)"a, = 0, ,

@, being the sum of the determinants of the r-rowed principal
(coaxial) minors, i.e. the minors in which the indices of the rows are
the same as those of the columns, a.nd a, being the determinant
of the matrix 4 itself. ,

Hence there are exactly n characteristic roots of a matrix of order _
n?, some of which may be Trepedted. ' g

The characteristic equation of a matrix has the importa.nt property
that it is invariant for transformations of the matrix, :
- Bgusvalent matrices have the same characteristic equations.
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The proof is quite gimple, for sinoce e
| - [M—T8T] = [T7]AI —'5'][’—"]

PI—T-8T| = | TN S|IT|
= 8.

we have also

1 6 The classical canonical form ofa matrix '
'(a) AH characteristic roots distinct - Hadoms "
. Of all the transforms of a given matrix, certain ones may ‘be ohosen :

as especially simple in form. These are the canonical forms. Of these
the most important; -and the only one we shall consider here, is the
classical canonical form, which we now prooeed to obtain. Wa treat
first of the simpler case when all the cha.ra.ctenstm roots of the matnx -
are distinct.

Let A = [ay] be.a matrix of order n? mth n dlstmot chamctemtle,
10018 Apy Agyeees Age _
Since [\, I—A4] is & smgu]a.r matiix, we can ﬁnd a vector [b,a

schthat [ I—AJs,]=0. L
Hence - : ' A{b ]=[b (16 l)
Further, the n vectors [b,] are lmea.rly independent, for since
(A=A D[b,] =0,

L Safbd 0 | |
" ‘multiplying on the left by (A——A, (A=A I).. (A—A,, I ) we should :
obtail o Bl M)Ay — ) A,) = O. .

Henoeal-—o and similarly oy = a,—',-a,,—-.o '

Thus, since the vectors [b,,] are linearly independent, the ma.tnx 7
" [ba] 18 non-smgular Combining all the equa.twns (1.8;1) in matrix -
f btam : . ‘
Soem'me o L A[bu] == [bd][lcsd] |
whem 8,, =0 (s #4), and 8 = 1. [A,S,,] is a dmgonn.l ma.fmx
But ginoe [b,,] is non-singular we may put ,
» [bd}—lA[bd] =, sd]
o= dl"g(Al: A’I !An) :
L Any matriz of which aZl the. characteristic roots are distinet may

be transformed into a diagonal matriz in which. the diagonal elemtc s
are the ckamctemtw roots of the mairiz. : \

~
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This is the classical canonical form of the matnx for this case. It
_1s clearly unique, save for the order in which the characteristic roots
are placed in the leading diagonal. :
- From the existence of this form we deduce an mportant theorem
na.mely ‘ -

- Every malrixz satisfies zts own ckaractematw equatzon

Firstly, the product of two diagonal matrices is obtain by multi-
_ plymg correspondmg terms, e.g.

dla’g(Av 23003 A )diag iy, g, :F‘n) = dla’g(hlll'l:aa”'z’ s A )
It follows that if A = diag(A;, Apyeees ),

then [A=XA I[A=AI)..[A=X, I]=0,
je. = Ar—g A"iig,An-3—.. 4(—1)a,l =0,

and a diagonal matrix must satisfy its characteristic equation.
Secondly, since equivalent matrices hdve the same characteristic
equation, and since also they must satisfy the same equation, for

(7247, T-4"T,

it follows that every matrix which can be transformed into a diagonal
form, e.g. every matrix with distinct characteristic roots, must sa.tmfy
its characteristic equation.
Lastly, if 4 is any matrix wha.tsoever, we can find a matiix Z
such that 44 uZ has all its characteristic roots distinet and satisfies
its characteristic equation. We now take the limit as u tends to
zero, whence A satisfies its characteristic equation.

,l. 7. The classical canonical form of a matrix
(b) Muitiple characteristic roots

Let A = [ay] be a matrix of order »? for Whlch the cha.ractenstlc
root A, is repeated 7, times. Then a vector [«,] can be found such

Sl  [3alloa] = [

If [ey] is any non-singular matnx of which the ﬁrst column is
[#], then the first column of [ay)[ay] is [y ];. Hence the first
column of [ay]Y[ay][«y] consists of A, followed by (n—1) zeros.
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Let = [ o] = [ - |

in which s and ¢ run from 2 to n.

Now B has the characteristic root A; repeated »; times, since it is
g transform of 4, and hence [b,] has the same root repeated (r;—1)
times. Hence a matrix [By] (2 < s,¢ < n) can be found such that

. [ﬂ,,]-l[b,;,][ﬁa,] is of the form'

Thus the matrix [

Proceeding thus, & matrix K can be found such that

Av Y1 Vi o Vin
’}y Y28 - VYom
K-14K = \‘\\M

P Ya
Let K, be the rectangular matrix which consists of the first r,
columns of K. Then

Ax:' Yigs Y18 oo Yir,
’\_p Yags s Von

AK, = K, e S |=K4,
0 \\"\1’ Yri-1r7,
Ay
Clearly 4,—; I, is a matrix with zeros on and below the leading
diagonal, and [4,—A L] = 0.
- Henve JA—N LK, = K[4;,—) L] = 0.

Since X is a non-singular matrix the »; column vectors of K, are
linearlv independent. -

Similarly, corresponding to each characteristic yvot A; of 4 re-

2553 .

? B



0 .~ MATRICES Chap. I

peated r, times, we can find a reota.ngular matrix K, with » rows
and r; columns such that

AK; = K, 4;,
A off), ol o “&‘2«
A, off, )
~ where A; = A = (1.7;1)
0 T '

Let T' = [r,] be the square matrix obtained by putting together
all the rectangular matrices K;. There will be % columns since 3 7
is the total number of characteristic roots, namely n. Also T' 18

non-singular ; for if
Sokr=o

lﬁmmemmMMMﬁwpbdIPM—%Mmummmml
Z%ﬁ]—O

and we should have all these o,’s zero, since these vectors are the
linearly independent column vectors of K,. Similarly, all the o,’s
are zero, and 7' is non-singular.

We have

A4, ]

0
L) |

AT =T L I, ;
0 '.4";
whence T-14T is. a matrix
-Al 0 ]
T-AT =D =| Lfi_f’_i;___l | (17;2)

= diag(4,,4,,..., 4,) -

in which matrices of the type A4, (1.7;1) occur in positions about:
the leading diagonal, there being zeros above and below these



