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Preface

Optimization is a rich and thriving mathematical discipline. Properties
of minimizers and maximizers of functions rely intimately on a wealth of
techniques from mathematical analysis, including tools from calculus and
its generalizations, topological notions, and more geometric ideas. The
theory underlying current computational optimization techniques grows
ever more sophisticated—duality-based algorithms, interior point methods,
and control-theoretic applications are typical examples. The powerful and
elegant language of convex analysis unifies much of this theory. Hence
our aim of writing a concise, accessible account of convex analysis and its
applications and extensions, for a broad audience.

For students of optimization and analysis, there is great benefit to blur-
ring the distinction between the two disciplines. Many important analytic
problems have illuminating optimization formulations and hence can be ap-
proached through our main variational tools: subgradients and optimality
conditions, the many guises of duality, metric regularity and so forth. More
generally, the idea of convexity is central to the transition from classical
analysis to various branches of modern analysis: from linear to nonlinear
analysis, from smooth to nonsmooth, and from the study of functions to
multifunctions. Thus, although we use certain optimization models re-
peatedly to illustrate the main results (models such as linear and semidefi-
nite programming duality and cone polarity), we constantly emphasize the
power of abstract models and notation.

Good reference works on finite-dimensional convex analysis already ex-
ist. Rockafellar’s classic Conver Analysis [149] has been indispensable and
ubiquitous since the 1970s, and a more general sequel with Wets, Varia-
tional Analysis [150], appeared recently. Hiriart—Urruty and Lemaréchal’s
Convex Analysis and Minimization Algorithms [86] is a comprehensive but
gentler introduction. Our goal is not to supplant these works, but on the
contrary to promote them, and thereby to motivate future researchers. This
book aims to make converts.

vii



viii Preface

We try to be succinct rather than systematic, avoiding becoming bogged
down in technical details. Our style is relatively informal; for example, the
text of each section creates the context for many of the result statements.
We value the variety of independent, self-contained approaches over a sin-
gle, unified, sequential development. We hope to showcase a few memorable
principles rather than to develop the theory to its limits. We discuss no
algorithms. We point out a few important references as we go, but we make
no attempt at comprehensive historical surveys.

Optimization in infinite dimensions lies beyond our immediate scope.
This is for reasons of space and accessibility rather than history or appli-
cation: convex analysis developed historically from the calculus of vari-
ations, and has important applications in optimal control, mathematical
economics, and other areas of infinite-dimensional optimization. However,
rather like Halmos’s Finite Dimensional Vector Spaces [81], ease of ex-
tension beyond finite dimensions substantially motivates our choice of ap-
proach. Where possible, we have chosen a proof technique permitting those
readers familiar with functional analysis to discover for themselves how a
result extends. We would, in part, like this book to be an entrée for math-
ematicians to a valuable and intrinsic part of modern analysis. The final
chapter illustrates some of the challenges arising in infinite dimensions.

This book can (and does) serve as a teaching text, at roughly the level
of first year graduate students. In principle we assume no knowledge of real
analysis, although in practice we expect a certain mathematical maturity.
While the main body of the text is self-contained, each section concludes
with an often extensive set of optional exercises. These exercises fall into
three categories, marked with zero, one, or two asterisks, respectively, as
follows: examples that illustrate the ideas in the text or easy expansions
of sketched proofs; important pieces of additional theory or more testing
examples; longer, harder examples or peripheral theory.

We are grateful to the Natural Sciences and Engineering Research Coun-
cil of Canada for their support during this project. Many people have
helped improve the presentation of this material. We would like to thank all
of them, but in particular Patrick Combettes, Guillaume Haberer, Claude
Lemaréchal, Olivier Ley, Yves Lucet, Hristo Sendov, Mike Todd, Xianfu
Wang, and especially Heinz Bauschke.

JONATHAN M. BORWEIN
ADRIAN S. LEwWIS

Gargnano, Italy
September 1999
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Chapter 1

Background

1.1 Euclidean Spaces

We begin by reviewing some of the fundamental algebraic, geometric and
analytic ideas we use throughout the book. Our setting, for most of
the book, is an arbitrary Euclidean space E, by which we mean a
finite-dimensional vector space over the reals R, equipped with an inner
product (-,-). We would lose no generality if we considered only the space
R™ of real (column) n-vectors (with its standard inner product), but a
more abstract, coordinate-free notation is often more flexible and elegant.

We define the norm of any point z in E by ||z|| = \/(z, z), and the unit
ball is the set

B={zecE||z| <1}.

Any two points z and y in E satisfy the Cauchy-Schwarz inequality
(2, 91 < llzllllyll-
We define the sum of two sets C and D in E by
C+D={z+y|zeC, ye D}.
The definition of C — D is analogous, and for a subset A of R we define
AC={ x| €A, ze€C}.

Given another Euclidean space Y, we can consider the Cartesian product
Euclidean space E x Y, with inner product defined by ((e, ), (f,v)) =
(e, ) + (z,y)-

We denote the nonnegative reals by R. If C is nonempty and satisfies
R,.C = C we call it a cone. (Notice we require that cones contain the
origin.) Examples are the positive orthant

R} = {z € R" | each z; > 0},
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and the cone of vectors with nonincreasing components
2={zeR"|z1223> - 2 2Zpn}.

The smallest cone containing a given set D C E is clearly R, D.

The fundamental geometric idea of this book is convezity. A set C in
E is convez if the line segment joining any two points z and y in C is
contained in C: algebraically, Az + (1 — A\)y € C whenever 0 < A < 1. An
easy exercise shows that intersections of convex sets are convex.

Given any set D C E, the linear span of D, denoted span (D), is the
smallest linear subspace containing D. It consists exactly of all linear
combinations of elements of D. Analogously, the convez hull of D, denoted
conv (D), is the smallest convex set containing D. It consists exactly of
all conver combinations of elements of D, that is to say points of the form
S Axt, where A\; € Ry and 2* € D for each i, and 35\ = 1 (see
Exercise 2).

The language of elementary point-set topology is fundamental in opti-
mization. A point z lies in the interior of the set D C E (denoted int D)
if there is a real § > 0 satisfying £ + 6B C D. In this case we say D is a
neighbourhood of z. For example, the interior of R7 is

R}, = {z € R" | each z; > 0}.

We say the point = in E is the limit of the sequence of points z!,z?,...
in E, written 27 — z as j — oo (or limj 2/ = 2), if |27 — z| — 0.
The closure of D is the set of limits of sequences of points in D, written
cl D, and the boundary of D is clD \ int D, written bd D. The set D is
open if D = int D, and is closed if D = clD. Linear subspaces of E are
important examples of closed sets. Easy exercises show that D is open
exactly when its complement D¢ is closed, and that arbitrary unions and
finite intersections of open sets are open. The interior of D is just the largest
open set contained in D, while cl D is the smallest closed set containing D.
Finally, a subset G of D is open in D if there is an open set U C E with
G=DnU.

Much of the beauty of convexity comes from duality ideas, interweaving
geometry and topology. The following result, which we prove a little later,
is both typical and fundamental.

Theorem 1.1.1 (Basic separation) Suppose that the set C C E is closed
and convez, and that the point y does not lie in C. Then there exist real b
and a nonzero element a of E satisfying (a,y) > b > (a,z) for all points
in C.

Sets in E of the form {z | (a,z) = b} and {z| (a,z) < b} (for a nonzero
element a of E and real b) are called hyperplanes and closed halfspaces,
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respectively. In this language the above result states that the point y is
separated from the set C by a hyperplane. In other words, C' is contained
in a certain closed halfspace whereas y is not. Thus there is a “dual”
representation of C as the intersection of all closed halfspaces containing
it.

The set D is bounded if there is a real k satisfying kB O D, and it is
compact if it is closed and bounded. The following result is a central tool
in real analysis.

Theorem 1.1.2 (Bolzano—Weierstrass) Bounded sequences in E have
convergent subsequences.

Just as for sets, geometric and topological ideas also intermingle for the
functions we study. Given a set D in E, we call a function f : D — R
continuous (on D) if f(z*) — f(z) for any sequence ' — z in D. In
this case it easy to check, for example, that for any real o the level set
{z € D| f(z) < a} is closed providing D is closed.

Given another Euclidean space Y, we callamap A : E — Y linearif any
points z and z in E and any reals A and p satisfy A(Ax+puz) = Az +pAz.
In fact any linear function from E to R has the form (a, -) for some element
a of E. Linear maps and affine functions (linear functions plus constants)
are continuous. Thus, for example, closed halfspaces are indeed closed.
A polyhedron is a finite intersection of closed halfspaces, and is therefore
both closed and convex. The adjoint of the map A above is the linear map
A* 'Y — E defined by the property

(A*y,z) = (y, Az) for all points z in E andy in Y

(whence A** = A). The null space of Ais N(A) = {z € E| Az = 0}. The
inverse image of a set H C Y is the set A'!H = {z € E| Az € H} (so
for example N(A) = A~1{0}). Given a subspace G of E, the orthogonal
complement of G is the subspace

Gt ={ycE|(z,y) =0 for all z € G},

so called because we can write E as a direct sum G & G*. (In other words,
any element of E can be written uniquely as the sum of an element of G
and an element of G*.) Any subspace G satisfies G*1 = G. The range of
any linear map A coincides with N(4*)+.

Optimization studies properties of minimizers and maximizers of func-
tions. Given a set A C R, the infimum of A (written inf A) is the greatest
lower bound on A, and the supremum (written sup A) is the least upper
bound. To ensure these are always defined, it is natural to append —oco and
+00 to the real numbers, and allow their use in the usual notation for open
and closed intervals. Hence, inf § = +00 and sup® = —oo, and for example
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(—00, +00] denotes the interval RU{+o00}. We try to avoid the appearance
of +00 — 0o, but when necessary we use the convention +0o0 — oo = +00,
so that any two sets C and D in R satisfy inf C + inf D = inf(C + D). We
also adopt the conventions 0 - (£00) = (+o00) - 0 =0. A (global) minimizer
of a function f : D — R is a point Z in D at which f attains its infimum

igff =inf f(D) = inf{f(z) | z € D}.

In this case we refer to Z as an optimal solution of the optimization problem
infp f.
For a positive real § and a function g : (0,0) — R, we define
hm 1nf t) = lim inf g
g( ) tl0 (O, t)
and
lim sup g(¢) = lim sup g.
tlo t10 (0,1)
The limit lim;}o g(¢) exists if and only if the above expressions are equal.
The question of attainment, or in other words the existence of an optimal
solution for an optimization problem is typically topological. The following
result is a prototype. The proof is a standard application of the Bolzano—
Weierstrass theorem above.

Proposition 1.1.3 (Weierstrass) Suppose that the set D C E is non-
empty and closed, and that all the level sets of the continuous function
f:D — R are bounded. Then f has a global minimizer.

Just as for sets, convexity of functions will be crucial for us. Given a
convex set C C E, we say that the function f : C — R is convez if

fAz+ (1= Ay) <Af(z) + (1 -Nf(v)

for all points z and y in C and 0 < A < 1. The function f is strictly
convez if the inequality holds strictly whenever = and y are distinct in C
and 0 < A < 1. It is easy to see that a strictly convex function can have at
most one minimizer.

Requiring the function f to have bounded level sets is a “growth con-
dition”. Another example is the stronger condition

liminf =———= 1)

> 0, 1.14
lizl—oo [lz]| (L14)

where we define

hmlnff() lim f{H i ‘Oaéa:ECﬂrB}

llell—soo [|z||  r—oo

Surprisingly, for conver functions these two growth conditions are equiva-
lent.
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Proposition 1.1.5 For a convez set C C E, a convez function f: C - R
has bounded level sets if and only if it satisfies the growth condition (1.1.4).

The proof is outlined in Exercise 10.

Exercises and Commentary

Good general references are [156] for elementary real analysis and (1] for lin-
ear algebra. Separation theorems for convex sets originate with Minkowski
[129]. The theory of the relative interior (Exercises 11, 12, and 13) is devel-
oped extensively in [149] (which is also a good reference for the recession
cone, Exercise 6).

1. Prove the intersection of an arbitrary collection of convex sets is con-
vex. Deduce that the convex hull of a set D C E is well-defined as
the intersection of all convex sets containing D.

2. (a) Prove that if the set C C E is convex and if
zh,z%,...,2m € C, 0< A, Ae,..., dm €R,

and 3" A; = 1 then Y- \iz* € C. Prove, furthermore, that if
f:C — R is a convex function then f(}_ \iz?) < 3 \if(z?).

(b) We see later (Theorem 3.1.11) that the function — log is convex
on the strictly positive reals. Deduce, for any strictly positive
reals z!,z2%,...,2™, and any nonnegative reals A, \z,...,Am
with sum 1, the arithmetic-geometric mean inequality

Z izt > H(:L'i))“' ;

(c) Prove that for any set D C E, conv D is the set of all convex
combinations of elements of D.

3. Prove that a convex set D C E has convex closure, and deduce that
cl(conv D) is the smallest closed convex set containing D.

4. (Radstrom cancellation) Suppose sets A, B,C C E satisfy
A+CcCcB+C.
(a) If A and B are convex, B is closed, and C is bounded, prove
ACB.
(Hint: Observe 2A+C=A+(A+C)Cc2B+C.)

(b) Show this result can fail if B is not convex.
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5. * (Strong separation) Suppose that the set C C E is closed and
convex, and that the set D C E is compact and convex.

(a) Prove the set D — C is closed and convex.

(b) Deduce that if in addition D and C are disjoint then there ex-
ists a nonzero element a in E with inf,cp(a,z) > Supyec(a,y).
Interpret geometrically.

(c) Show part (b) fails for the closed convex sets in R2,

D = {.’L‘I:I:1>0, .’L‘1x221},
C = {.’ZII.’L‘QZO}

6. ** (Recession cones) Consider a nonempty closed convex set C' C
E. We define the recession cone of C by

0t(C) ={d€E|C +R,d C C}.

(a) Prove 0% (C) is a closed convex cone.

(b) Prove d € 0%(C) if and only if 2 + Ryd C C for some point z
in C. Show this equivalence can fail if C is not closed.

(c) Consider a family of closed convex sets C., (y € T') with non-
empty intersection. Prove 0%(NC,) = n0*+(C,).

(d) For a unit Vector u in E, prove u € 0t (C) if and only if there is
a sequence (2") in C satisfying ||z"|| — oo and ||z7||~z" — w.
Deduce C is unbounded if and only if 0*(C) is nontrivial.

(e) If Y is a Euclidean space, the map 4 : E — Y is linear, and
N(A) N 0*(C) is a linear subspace, prove AC is closed. Show
this result can fail without the last assumption.

(f) Consider another nonempty closed convex set D C E such that
0%(C) N 0T (D) is a linear subspace. Prove C — D is closed.

7. For any set of vectors a',a%,...,a™ in E, prove the function f (m) =
max;(a*,z) is convex on E.

8. Prove Proposition 1.1.3 (Weierstrass).

9. (Composing convex functions) Suppose that the set C C E is
convex and that the functions fi, f3,..., fn : C — R are convex, and
define a function f : C — R™ with components fi. Suppose further
that f(C) is convex and that the function g : f(C) — R is convex
and isotone: any points y < z in f(C) satisfy 9(y) < g(z). Prove the
composition g o f is convex.
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10. * (Convex growth conditions)
(a) Find a function with bounded level sets which does not satisfy
the growth condition (1.1.4).
(b) Prove that any function satisfying (1.1.4) has bounded level sets.
(c) Suppose the convex function f : C' — R has bounded level sets
but that (1.1.4) fails. Deduce the existence of a sequence (z™)
in C with f(z™) < ||lz™||/m — 4oc0. For a fixed point Z in C,
derive a contradiction by considering the sequence

m
4+ —— (2™ - Z).
[l

Hence complete the proof of Proposition 1.1.5.

The relative interior

Some arguments about finite-dimensional convex sets C simplify and lose
no generality if we assume C contains 0 and spans E. The following exer-
cises outline this idea.

11. ** (Accessibility lemma) Suppose C is a convex set in E.

(a) Prove cIC C C + €B for any real € > 0.
(b) For sets D and F in E with D open, prove D + F is open.

(c) For z in intC and 0 < A < 1, prove Az + (1 — A)clC C C.
Deduce AintC + (1 — A)clC C int C.

(d) Deduce int C is convex.

(e) Deduce further that if int C' is nonempty then cl(int C) = clC.
Is convexity necessary?

12. ** (Affine sets) A set L in E is affine if the entire line through any
distinct points z and y in L lies in L: algebraically, A+ (1—A)y € L
for any real \. The affine hull of a set D in E, denoted aff D, is
the smallest affine set containing D. An affine combination of points
zl,22%,...,2™ is a point of the form Y " \;z?, for reals \; summing
to one.

(a) Prove the intersection of an arbitrary collection of affine sets is
affine.

(b) Prove that a set is affine if and only if it is a translate of a linear
subspace.

(c¢) Prove aff D is the set of all affine combinations of elements of D.
(d) Prove cI D C aff D and deduce aff D = aff (c] D).



