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INTRODUCTION TO THE SERIES

This is a series of books concerned with the quantitative approach to
problems in the social and administrative sciences. The studies are in
particular in the overlapping areas of mathematical economics,
econometrics, operational research, and management science. Also, the
mathematical and statistical techniques which belong to the apparatus of
modern social and administrative sciences have their place in this series.
A well-balanced mixture of pure theory and practical applications is
envisaged, which ought to be useful for universities and for research
workers in business and government.

The Editor hopes that the volumes of this series, all of which relate to
such a young and vigorous field of research activity, will contribute to the
exchange of scientific information at a truly international level.

THE EDITOR



PREFACE

This book is the outcome of a number of years of work in the area of linear
and quadratic programming. Most of it is based on articles and papers
written together by Andrew Whinston or by this author only.

While writing this book, I had two objectives in mind. The first one was
to provide a detailed exposition of the most important methods of linear
and quadratic programming which will introduce these methods to a wide
variety of readers. For this purpose, numerical examples are given through-
out the book. The second objective was to relate the large number of methods
which exist in both linear and quadratic programming to each other. In
linear programming the concepts of dual and parametric equivalence were
useful and in quadratic programming that of symmetric and asymmetric
variants.

Throughout the book, the treatment is in terms of methods and tableaux
resulting from these methods rather than mathematical theorems and proofs,
or, in other terms, the treatment is constructive rather than analytical. The
main advantage of such a constructive approach is thought to be in the
accessibility of the methods. Whereas an analytical approach introduces
a method through a maze of theorems after which the methods appear
as an afterthought, a constructive approach first states the main principles
of the method, after which obstacles and implications are dealt with one
by one.

A disadvantage of detailed exposition and of numerical examples is lack
of conciseness. This has resulted in the limitation of the number of topics
treated in this book. Hence such topics as decomposition methods for linear
and quadratic programming, quadratic transportation problem and integer
linear and quadratic programming are missing in this book, though most
concepts on which methods for these problems are based follow rather
naturally from the methods which are treated. However, inclusion of a
number of these subjects would have increased the size of this book unduly.

The linear complementarity problem is treated in some detail, not only
because it is an immediate generalization of linear and quadratic program-
ming but also because it is amenable to an interesting generalization of the
parametric methods which form the core of this book.

The book can be used for graduate or senior undergraduate courses in
mathematical programming. In case of a one-year course, it could serve as
a basis for the first half; the second half would then deal with general non-
linear programming and integer programming.

vii



viii PREFACE

The mathematical prerequisite of the book is that the reader should have
a working knowledge of elementary matrix algebra.

Thanks are due to Henri Theil, who has introduced me to the subject of
quadratic programming by asking me to participate in the development of
a method for quadratic programming (which can be found in chapter 12)
and to Andrew Whinston, with whom I had a number of years of fruitful
cooperation and who was a coauthor of a number of the articles on which
this book is based.

Thanks are also due to the National Research Council of Canada for
research support and to Econometrica, The International Economic Review,
and Operations Research for allowing me to use material published in these
journals for parts of chapters 6, 9 and 12.

C. VAN DE PANNE
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CHAPTER 1
THE SOLUTION OF LINEAR SYSTEMS

1.1. General linear systems and canonical forms
Let us consider an equation system of the following form:

aix;+ apx.+ ...+ diXx,= b,

Ay X+ anx:+ ...+ 02,%,= bs,

A1 X1+ AaXo+ oo + AinXn = by, )
This is a system of m linear equations in n variables x,, ..., x,. The
system (1) may have no solution, one solution or a number of solutions;
this depends on the coefficients of the system a,,, ..., a,., and b, ..., b,...

The solutions, if any, of a general system like (1) cannot immediately
be found from the system. Systems having some special form may pro-
vide more information about their solutions. Consider a system of the
following form:

X T AQrms 1 X1 T Qims2Xmzt oo+ A1 Xa = by,

X2+ GomaXmerF QrmirXmizt oo+ A2 X, = by,

xm + am,m +Ixm+l + am.m +2-xm +2 + cee + amnxn i bm- (2)
One solution of this system is, for example,
X1=b,X2= by, e, X = Doy X1t = X2 = ... = X, = 0. 3)

Other solutions of this system may be found by choosing any values for
the variables X,,.1, Xu 2, ..., X, and computing the corresponding values
for the first m x-variables. If the particular values chosen for the last
n-m x-variables are indicated by bars, we have for instance for the
corresponding value of x,, indicated by %,:

Xi=b—a . Xmi1— Aim2Xmi2— oo — QX 4)

In fact, any solution satisfying (2) may be obtained in this way. Hence it
may be said that systems having forms like (2) give immediate access to
any solution of the system.



2 THE SOLUTION OF LINEAR SYSTEMS

The system (2) is said to be in ordered canonical form. A system is in
ordered canonical form if the first variable only appears in the first equa-
tion, having a unity coefficient, the second variable only appears in the
second equation, having a unity coefficient, and so on. The variables
which appear in one equation only with a unity coefficient in that equa-
tion are called the basic variables of the system; each basic variable is
connected with one equation. Hence in a system in ordered canonical
form, the first variable is a basic variable and is connected with the first
equation; the second variable is a basic variable and is connected with
the second equation, and so on. In a system of m equations in ordered
canonical form, the first m variables are the basic variables; the remain-
ing n—m variables are called the nonbasic variables.

Consider the following system:

2x,+5x, +x,= 10,
3x,— 4%+ X3 =12. (5)

In this system x, is a basic variable in the first equation and x; in the
second equation, but the system is not ordered. Such a system is said to
be in canonical form. A system in canonical form can easily be brought
into ordered canonical form by renaming and rearranging variables. For
example, in the above system, x, may be renamed as x¥, x; as x%, x, as
x%, and x. as x%. Rearranging, we find

x¥ +2x¥+5x% =10,
x¥+3xF—4x¥ =12, (6)

which is a system in ordered canonical form. It may therefore be con-
cluded that the difference between an ordered and a general canonical
form is a rather trivial one. In the following we shall in most cases deal
with general canonical forms, but in some cases it will be convenient to
write such a system in ordered canonical form.

1.2. Reduction to canonical form

Two linear equation systems which have the same solutions are called
equivalent. Because it is much easier to find solutions of systems in
canonical form than solutions of general equation systems, it is desirable
to find a system in canonical form which is equivalent to a given general
system. First it will be shown how an equivalent system can be derived
from a given system, or, which is the same, how a given system may be



12 REDUCTION TO CANONICAL FORM 3

transformed into an equivalent one. After that, it is shown how the
transformations can be used to obtain from any given system an equival-
ent canonical form, if this is at all possible.

The solutions of a system of equations remain the same if an equation
of that system is replaced by ¢ times that equation, where ¢ is a nonzero
constant. This can be shown as follows. Let the equation concerned be
the first one of (1). This equation may be replaced by

clanx,+ apx,+ ...+ a..x,) = ch. @)

Any solution satisfying (1) will also satisfy the modified system (1), in
which the first equation has been replaced by (7). Furthermore, any solu-
tion satisfying the modified system must also satisfy the original system,
since the first equation of (1) and equation (7) have the same solutions.
Hence the original and the modified system must have the same solu-
tions.

The solutions to an equation system also remain the same if an equa-
tion is replaced by the sum of that equation and a multiple of another
equation of the system. Let us, for example, add to the second equation
of (1) ¢ times the first equation. We then have

A2 X1+ AoaXo+ oo+ AoX, +c(ay X+ AXo+ ...+ aX,) = b+ cb,. (8)

Any solution which satisfied (1) will satisfy (1) with the second equation
replaced by (8); on the other hand, solutions satisfying (1) with (8) instead
of the second equation will also satisfy (1) because, if the first equation of
(1) is satisfied, the corresponding parts of (8) cancel. Hence also this
operation leaves the solutions of the system unchanged.

We may therefore multiply (or divide) any equation by a nonzero con-
stant or add to an equation a multiple of another equation without alter-
ing the solutions of the system. These two operations will be used to
transform a general equation system into one in canonical form, if that is
possible.

These two standard transformations are used to transform a general
system into one in canonical form. This is done as follows. Suppose we
want to bring the system (1) in canonical form. The system is first trans-
formed in such a way that x, appears in the first equation only, and with a
unit coefficient; after that, the resulting system is transformed in such a
way that x, appears only in the second equation, with a unit coefficient,
and so on, until finally a system in canonical form is obtained.

The first transformation is started by dividing the first equation by a,,,



4 THE SOLUTION OF LINEAR SYSTEMS

in order to give x, a unit coefficient in this equation. If a,, is zero, the first
equation and another equation with a nonzero x,-coefficient are inter-
changed. The resulting equation is

xitelanx.+aianxs+...+aitanx. =ai'b,. 9)
This may be written as

Xi+buxatbixs+ ...+ bux, = by (10)
with

= =1 i =
b.=ailan bs=a'as,....b, =a, A, bo=a'b,.

The coefficients of x, in the other equations are made zero by adding to
these equations appropriate multiples of (9). Hence we add to the second
equation — a, times (9). The second equation then becomes

(ax— azlaTllalz)XE +(a»— ana l—llal?)xf# +o+ (@20 — a:lailillaln)xn
=b2—a3,aﬂ'b1; (1])

this can be written as

boxs+ basxs+ ...+ bayX, = by, (12)
with
br=a»—axaila,= A — A b,
b= axs—aaila;= ax — A b,

b, = a,,— a»a,'a,= Az, — a» b,
by=b, — aZIaTIIbI =b, —axb.

The other equations are transformed in the same way. After the first
transformation the system has the following form:

X + b]:.x:+ b]3X3+ . - b,,,x,.= b](),
booxo+ baxi+ ...+ b,.x,= b,

b,2X2+ bosxs+ ...+ bpuXa = bo. (13)

The transformation formulas for the coefficients, if we denote b, by a0, b,
by as, and so on, are

- .
b,‘j:ana,'j, l:],

=aij_ai|a?11a|;:au*aub”, i#1. (14)
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The second expression for i# 1 is computationally more efficient than
the first one.

We have now obtained a system which is equivalent to the original sys-
tem and in which x, is a basic variable. Now the second transformation
starts which has as its objective to transform the system (13) into a
system in which x, is also a basic variable with a unit coefficient in the
second equation and zeros in the other equations. Hence we divide the
second equation of (13) by b..; if b,. is zero, the second equation and one
of the remaining equations having a nonzero x.-coefficient are inter-
changed. After this, suitable multiples of the resulting equation are added
to the other equations of (13), the first equation included. The resulting
system then has the following form

X + C|3x3+ P CinXn = C o,
X>+ CpXst+...+ ConXi = Cao,

C33X3+ ...+ CanX, = Czo,

Crn3Xs + oo F CoinXs = Cino} (15)

the transformation formulas are

Cij = bgzlb,'j, l = 2,
= b,‘j . bizb;zlsz = b,’j - bizCZj, i #2. (]6)

Note that the second transformation preserves the effect of the first
transformation in the sense that the coefficients of x, in equations other
than the first stay zero. This can be seen as follows. We have

CiI:b;’.‘lbih i=2,
Cil:bil_bilb;;blla i #2, a7

From (13) it is obvious that b;, =0 for i # 1, so that ¢;, for i # 1 must be
zero. Furthermore, ¢,,=b,,— bp.b» b, =1—-0=1.

The other transformations are performed in a similar way. If no com-
plications occur, a system in canonical form as given in (2) may be
obtained after m transformations. Before dealing with possible compli-
cations, a numerical example of the transformation of a general system
into one in canonical form will be given.



