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Prefac_e

This monograph arose from lectures at the University of Oklahoma on
topics related to linear algebra over commutative rings. Our desire
was to provide both an introduction and a survey of matrix theory
over commutative rings. Many results and folklore in this subject
are known to experts; however, these results are not easily discov-
ered by the beginner or a scholar with only a temporary curiosity.

The scalars in the matrices under consideration are generally
assumed to be from a commutative ring. Noncommutative scalar rings
are treated only when no additional theory is needed to handle that
setting. It was also hoped that this manuscript might serve as an
introduction to algebraic K-theory and might serve as a starting
point, for example, to the works of H. Bass.

The contents of the manuscript are arranged in a traditional
format. The first chapter is devoted to matrix theory over a com-
mutative ring. Chapter II summarizes standard results on free mod-
ules. In Chapter III, we examine the endomorphism rings of finite-
ly generated free and projective modules, and, in Chapter IV, the
structure theory of a projective module. In Chapter V the theory
of a single endomorphism is discussed. The aims of each chapter
are described in more detail below. L

Chapter I summarizes the folklore and theory of matrix calcula?:

tions over commutative rings. As in all of the chapters, there ‘are

iid"



iv Preface

extensive exercise sets. Some exercises are trivial or calculation-
al; others are selected from various research papers and either ex-
amine the theory for particular choices of commutative rings or sum-
marize additional useful information. Polynomial theory over a com-
mutative ring plays a significant role in matrix theory and linear
algebra. Thus, this topic is also discussed in Chapter I. Topics
in Chapter I include the following: determinantal identities and
ideals; discussion of similarity; discussion of the general linear
group, its normal subgroups, its automorphisms, generators, and its
stable limit; a survey of the solution of linear equations over a
commutative ring and the related ideas of matrix rank.

In Chapter II we discuss the theory of a free module of finite
dimension over a commutative ring. These topics are of interest in
their own right and serve to provide the theory of projective mod-
ules under localization. Among other topics this chapter examines
the following: the Fundamental Theorem of Projective Geometry and
the projective plane—the introductory theory of projective modules
and the theory of equivalence transformations—Fitting's theorem,
and Fitting equivalence.

Chapter III describes the endomorphism ring of a finitely
generated free and projective module. We begin with an analysis of
a free module and its endomorphism ring of matrices and examine the
relationships between the module theory over the scalar commutative
ring and the module theory over the matrix ring. In the next sec-
tion, using the '"free' theory as motivation, we develop the standard
duality theory of a finitely generated projective module discussing
generators, projectives, and Morita theory. In Section D the Three-
Cornered Galois Theory of Baer is described for a projective module.
The concluding sections of this chapter describe the radical and
automorphisms of an endomorphism ring of a finitely generated pro-
jective module. The appendix to this chapter discusses invertible
submodules of matrix rings and the theory of equivalence.

Chapter IV concerns the theory of localization, finitely gener-

ated modules, Fitting ideals, and the structure theory of a finitely’
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generated projective module. Included in this chapter is a proof
of Serre's theorem using the matrix approach of Suslin and results
on stably free projective modules.

The final chapter, Chapter V, is a study of the theory of a
single endomorphism of both a free and a projective module. For a
projective module this includes a discussion of the trace, deter-
minant, characteristic polynomial, determinant-trace polynomial,
and comments on similarity. This chapter also contains an intro-
duction to the K-theory of projective modules and the K-theory of
their endomorphism rings. The chapter concludes with (1) an ele-
gant theorem of Bass relating the exterior and symmefric algebras
and (2) a discussion of the Koszul complex.

As noted above, this monograph arose from lectures given at
the University of Oklahoma over several years on topics related to
the linear algebra of commutative rings. The writing of the mono-
graph began during the summer of 1979 while I was a guest of the
Department of Mathematics of Queen's University at Kingston, Ontario.
I am very appreciative to Anthony Geramita for inviting me to Queen's
and for arranging a comfortable and peaceful setting to begin this
work. The bulk of the manuscript was written in 1980-81 while I was
a participant in the "Year of Algebra" sponsored by the Department
of Mathematics of the University of California, Santa Barbara.
Julius Zelmanowitz was instrumental in arranging both this special
year in algebra and my visit, and I am deeply indebted to him. While
at Santa Barbara I enjoyed many enlightening conversations with
Edward Formanek. The initial version of the manuscript was typed
by Ms. Trish Abolins at the University of Oklahoma. The final ver-
sion was edited and prepared by the editorial staff of Marcel Dekker,
Inc. Chuck Weibel, Robert Guralnick, Alex Hahn, Bill Waterhouse,
and Andy Magid offered advice, results, and suggestions that were
incorporated into the text and much appreciated. Oklahoma graduate
students Mike Svec, Jeanna Moore, and Bessie Kirkwood helped with
the reading and the proofing of the manuscript. To all of the above

I owe thanks .
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.

Despite repeated proofing, I am certain that errors remain in
this manuscript. For these errors I apologize, with the hope that
ithey are minor, and I ask that the reader inform me both of dis-
covered errors, results that should have'been included, and recent

research results.*

Bernard R. McDonald

*National Science Foundation Disclaimer .-. . '"Any opinions, find-
ings, conclusions, or recommendations expressed in this publication
are those of the author and do not necessarily reflect the views of
the National Science Foundation.'
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Chapter I

Matrix Theory Over
Commutative Rings

A. THE POLYNOMIAL RING

The purpose of this chapter is to summarize many of the basic re-
sults in the theory of matrices over a commutative ring. The linear
theory of a projective moduie over a commutative ring, via localiza-
tion arguments, is often reduced to the theory of a free module and
ultimately to matrix calculations. Some of these calculations are
folklore, some are easy extensions of analogous calculutions over a
field, some have been scattered through the literature, and some
[e.g., Suslin's results on the normality of En(R) in GLn(R)] are
recent and nontrivial. This chapter also serves to introduce some
of the notation we will employ throughout the monograph.

Since matrix theofy and linear algebra are intimately associ-
ated with polynomial theory, this section assembles the elementary
polynomial theory we will need. Most texts on commutative algebra
or introductory graduate algebra provide good introductions to the
theory of the pplynoﬁial ring over a commutative ring. We also
recommend the survey article by Robert Gilmer [G29].

Let R pe a commutative ring and X be an indeterminate over R.
The polyngmial ring R[X] and the ring of formal power series R[[X]]
are fundamental to the study of commutative rings. The iuportanée

of polynomials is based on the substitution morphism:
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Suppose that o: R > S is a ring morphism and o(r)X =
Ao(r) for some fixed A in S and all r in R. Then there

is a unique ring morphism

o,: R[X] +S

A
sych that
(i) ox(r) = o(r) for all r in R.

(b) GX(X) = A

Precisely, % R[X] = S is given by oA(Z aixl) =oF c(ai)x1 and

makes the following diagram commutative:

R[X]

o] \ | "

R ———— S.

Further, the substitution morphism characterizes R[X] up to ring
isomorphism.

We now examine several cases of the substitution morphism.
First,.suppose that $ = R and o = identity. Then, if f = aixi,
“x(f) is denoted by f(A). The kernel of OA’ ker(ox), is an ideal
in R[X] called the ideal of relations satisfied by A. In order to
examine elements in the ideal of relations of A, recall that if f
in R[X] is a monic polynomial (indeed, the leading coefficient need
only be a unit) and g is in R[X], then (division élgorithm) there
exist unique q and r in R[X] with g = qf + r where r = 0 or deg(r) <
deg(£). ’

It is easily seen that the division algorithm and the substitu-

tion morphism are related by (Remainder Theorem)
g=X-2Nq+r

.yhere b o ox(g) = g(A). This gives immediately the Factor Theorem;

“i.e., the following are equivalent:

(a) g is in the ideal of relations satisfied by A; i.e.,
g(2) = 0.
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(b) g = (X - \)q for some q in R[X]; i.e., X - A is a factor
of g.

As a second application of the substitution morphism, let o: R -+ T

be a ring morphism, let S = T[X], and let A = X. Then
i .
oX(Z aiX ) =¢L c(ai)x

(we are employing the same notation for both indeterminates). If

A = ker(c) in the second application, then clearly
T4

ker(oy) = A[X] = {z aiXiIai in A}. ,

Hence, if o is surjective, T = R/A, GX is surjective, and
R[X]/ker(cx) = R[X]/A[X] is isomorphic to (R/A)[X].

Several facts follow from the second case:
kY

(a) o is injective (surjective) if and only if oy is injective
(surjective).

(b) A is a prime ideal in R if and only if A[X] is a prime
ideal in R[X]. ‘

(¢) If mis a maximal ideal in R, then m[X] is a prime (but
not maximal) ideal in R[X] and each prime ideal P of R[i]

which contains m[X] properly is a maximal ideal.

I.A.1 EXERCISE. Let o: R + S be a ring morphism of commutative

rings. Show that ¢ induces a ring morphism oy on the formal power
< " . o dy . o® 1

series rings, oy: R[[X]] = S[[X]] by UX(ZO aiX ) = Z, c(ai)x s I

A = ker(o), show that the kernel of 9y

{z aiXilai in A}
A[{X]].
Thus R[[X]]/A[[X]] = (R/A)[[X]]. Show that

ker(cx)

(a) c is ind tive (surjeetive) if and only if 9y is injec-
tive (surjective).

(b) A[[X]] is a prime ideal in R[[X]] if and only if A is a
prime ideal in R.
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(c) If mis maximal in R, then m[[X]] + (X) is the unique

maximal ideal of R[[X]] containing m[[X]]. [Hint:
(R/m) ([X]] is a local ring with maximal ideal (X).]

1.A.2 EXERCISE. Let f=aj + a X+ --- + aan be in R[X] and g =
n <
b0 + b1X oo 4+ an + ... be in R[[X]]
(a)

(b)

(<)

(d)

Show that g is a unit in R[[X]] if and only if bu is a
unit in R. Show that f is a unit in R[X] if and only if
2, is a unit in R and a, ..., a are nilpotent. (Hint:
Unit + nilpotent = unit.)
Show that f is a zero divisor in R[X] if and only if there
is ant # 0 in R with rf = 0. See Gilmer [G29] for a dis-
cussion of the analogue for g in R[[X]]; e.g., if R is
Noetherian, the analégous statement is valid.
Show that f is nilpotent in R[X] if and only if ag, 3,
-, @ are nilpotent. Show that if g is nilpotent in
R[[X]], then bi is nilpotent for each i (the converse is
true if R is Noetherian—see Gilmer [G29]).
Let A be an ideal in R. Let f and g be in R[X] with g

by * blx LR | mem. Suppose that fg is in A[X] but g

is not in A[X]. Show that there is an r in (bO’bl""’bm)’
but not in A, with rf in A[X]. Deduce (b) (for R[X]) from

this exercise.

I.A.3 EXERCISE (Continued). If S is a commutative ring, let S*

denote the group of units of S. Let o,: R[X] > R (resp., R[[X]] »

0

R) denote the ''constant term" morphism, i.e., substitution by 0.

Then %

induces a surjective group morphism o

o R[X]* » R* (resp.,

R[[X]]* - R*) by Exercise I.A.2.

(a)

Let U1 = ker 9y 95 R[X]* -~ R*., Then f is in UI; i.e.,
o,(f) = £(0) = 1, if and only if f= 1+ aX+... + aan
where a, ..., a are nilpotent. The set of nilpotent

polynomials in R[X] forms the prime radical* (from -

*We denote the prime or nil radical of a commutative ring S by rad(S)
and the Jacobsom radical by Rad(S)—see Exercise I.A.4.
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Exercise 1.A.4, rad(R[X]) = Rad(R[X]), which we denote by
rad(R[X]). Let N = rad(R). Then rad(R[X]) = N[X] and f
is in U1 if and only if f is in 1 + XN[X]. Thus U1 =1+
XN[X] and we have an exact sequence

o
11+ XN[X] > R[X]* —2 R* > 1
which splits under the natural injection R * R[X].
(b) Let Ul = ker(co), 9" R[[X]]* - R*. Show that if g is
in R[[X]], then 1 + Xg is invertible (see Exercise I.A.2).
Thus Gl =1+ XR[[X]] =1+ (X) and

%
1 >1+ (X)»R[[X]]* — R* > 1

is split exact with splitting morphism induced from the

injection R -~ R[[X]]. Hence from (a),

R[{X]* = R* x [1 + XN[[X]]
and
RE[X]]* = R* x [1 + (X)].

I.A.4 EXERCISE. Exercise I.A.3 introduced the nil and Jacobson
radicals. Recall that if R is a commutative ring, then the prime
or nil radical, denoted rad(R), is the intersection of all prime
ideals of R; equivalently, rad(R) is the ideal of all nilpotent ele-
ments in R. The Jacobson radical of R, Rad(R), is the intersection
of all maximal ideals of R; equivalently, the ideal of all x in R

such that 1 - xy is a unit in R for all y in R. Show that

(a) rad(R[X]) = Rad(R[X]) , (rad(R)) [X].
() f = z‘;O bix1 in R[[X]] is in Rad(R[[X]]) if and only if

b0 is in Rad(R) .

If R is Noetherian, then (see, e.g., Gilmer [G29]) rad(R[[X]]) =
(rad(R)) [[X]].

I.A.5 EXERCISE. The previous exercises introduced Noetherian rings.
Recall that a commutative ring R is said to be Noetherian if every

ideal of R is finitely generated.
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(a) Show that the following are equivalent for a commutative
ring R:
(1) Every ideal of R is finitely generated.

CA c--- of R

1 2
has only a finite number of distinct terms.

(2) Every ascending chain of ideals A

(b) (llilbert basis theorem) Show that if R is Noetherian,
then R[X] is Noetherian. (Similarly for R[XI""’Xn]')

(c) Show that if R is Noetherian, then R[[X]] is Noetherian.
(Similarly for R[[Xl,...,xni].)

(d) Suppose that R is a Noetherian ring and c: R + S is a
surjective ring morphism. Show that S is Noetherian.
Hence if A is an ideal of R{X] (resp., R[[X]]) and R is
Noetheriap, then R[X]/A (resp., R[[X]]/A) is Noetherian.

(e) If R is a Noetherian ring and M is a finitely generated

R-module, show that every submodule of M is finitely

generated.

+(f) *Let R be a commutative ring and ar, ol an be a finite
set in R. Let Z[?l""’an] denote the subring generated
by a, o oay in R. Show that Z[al,...,an] is Noetherian.

I1.A.6 EXERCISE

*

(a) Let k be a field and f a polynomial in k[X] of degree
n > 0. Show that f has at most n roots in k.

(b) Suppose that k is infinite and S is an infinite subset of
k. Let f be in k[X]. Show that f(a) = 0 for all a in S
implies that f = 0; i.e., f is the zero function.

(c) Supposes that k is an infinite field and Tl’
infinite subsets of k. Let f be in k[Xl,...,Xn]. Show
that if f(tl,...,tn) = 0 for all ti in Ti’ 1 €4 %n

) then f = 0.

(d) Let R be an infinite domaiq. Let f be a polynomial in
R[Xl""’xn]' Suppose that f(al,...,an) = 0 for all sets
of values {ml,...,an} satisfying some finite number of

algebraic relations
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g(ul,---,an) #0, h(al,---,an) #0,

Show that £ = 0. This has been called the "principle of
irrelevance of algebraic inequalities' by H. Weyl ([W32],
p- 4). See the discussion following Corollary I.6.

N

B. ELEMENTARY IDEAS

Throughout this chapter R will denote a commutative ring with iden-
tity 1. Let I and J be index sets of finite cardinality. Suppose
that '

I = {1,285 0000
J = {1,2,5; cessliks

An m x n matrix over R is a map
o: I xJ >R,

The map 0: I x J > R is usually identified with its range of values

in R arranged in the following tabular form:

41 212 %13 777 4qq
851. 833 393 7t A5,

- [aij]
[?ml m2 %m3 77 %mn

where aij = 0(i,j). The element aij in the table of values above
is said to have row index i and column index j and is said to occupy
the (i,j)-position or be the (i,j)-th entry of the matrix.

e Two maps o: I xJ >R and B: I xJ - R are equal, o = B, if
a(@,j) = B(i,j) for all (i,j) in I x J. Equivalently, if o has array
[aij] where o(i,j) = aij and B has array [bij] where B(i,j) = bij’
then [aij] = [bij] if aij = bij for all (i,j) in I x J.

We now suppress reference to maps o: I x J - R and use the /
tabular form to denote matrices. The set of-all matrices over R of
§ize m x n is denoted (R)m,n' If m = n, then (R)m,n is abbreviated
to (R)n. A matrix in (R)m 1 is called a column of size, dimension,

’
or length m. A matrix in (R)1 % is called a row of size, etc., n.
’
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Our first purpose is to give‘(R)m,n and (R)n algebraic opera-
tions and, consequently, an algebraic structure. The first opera-
tion, addition, is natural and is induced by both .the addition in R
and the standard fashion by which maps are added. If [aij] and
[bij] are in R, then define addition by

[a;51 + [by;1 = [ey,]
where c.1j = aij + bij for each (i,j) in I x J.

Clearly, (R)m,n under + is an Abelian group with. identity 0 =
[0] (0 in every position) where the additive inverse of [aij] is
-[aij] = [—aij]. Let r be in R. Define the scalar product (or
scalar multiplication) of r and [aij] by

r[aij] = [raij].

Then (R)m,n under addition and scalar multiplication is an R-module.
The next operation is a product of matrices. It does not arise
naturally from the consideration of maps o: I x J - R. Instead, it
is derived from the composition of linear maps between free modules
(in Chapter II).
Let [ajj] be in (R)m,n and [bjk] be in (R)n,p' Define the
product of [aij] and [bjk] by

[a;; 10y, = [e;, ]
where
n
S = jzl aijbjk'

The product above is a '"convolution product.'" Both the richness of
the theory of matrices and their inherent difficulties and mystery
are an outcome of this product. It is easy to see that the product

gives a map
®p,  x®) > ®)

which is R-bilinear; i.e.,



