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Preface 519-520

Preface: The Best of the Best

The top-reviewing papers from the 2003 International Joint Conference on Neural Networks
(IJCNN) have been expanded and assembled here in book format. In odd-numbered years, [JICNN
is led by the INNS, and in even-numbered years, by the IEEE. This year, we decided to offer this
select group of IJCNN authors a chance to expand their papers. The chapters of this book
appeared as a special issue of the Neural Networks journal in July 2003.

[JCNN is the flagship conference of the INNS, as well as the IEEE Neural Networks Society. It
has arguably been the pre-eminent conference in the field, even as neural network conferences
have proliferated and specialized. As the number of conferences has grown, its strongest
competition has migrated away from an emphasis on neural networks. IJICNN has embraced the
proliferation of spin-off and related fields (see the topic list, below), while maintaining a core
emphasis befitting its name. It has also succeeded in enforcing an emphasis on quality. While
being an inclusive conference, [JCNN has strict standards for acceptance, including literature
review, quality of English; and reproducibility, accuracy and meaningfulness of results. All
papers, even invited papers, were subject to a minimum of two reviews -- and many papers
received up to five. We rejected 15% of submitted papers, and only the top 10% of the remaining
papers are presented in this issue. These topics cover most of the major areas of research in neural
networks, including: self-organizing maps, reinforcement learning, support vector machines,
adaptive resonance theory, principal component analysis and independent component analysis, as
well as numerous engineering applications and detailed biological models of the function of
neural circuits.

IJCNN 03 has, at this writing, surpassed expectations in every capacity. We got all our first
choices of plenary speakers: Kunihiko Fukushima, Earl Miller, Terrence Sejnowski, Vladimir
Vapnik, and Christoph von der Malsburg; an extraordinary slate of tutorial presenters, and 730
submitted articles -- 33% over projections. Papers are presented in 20-minute format in four
parallel sessions, planned to be as topically orthogonal as possible. Poster presentations are given
their own generous time slot as well.

If you haven't been to IJCNN lately, you don't know what you are missing. For more information,
see www.ijenn.net or www.inns.org or www.ieee-nns.org. It has been our pleasure to work on
creating the program for [JCNN, as well as this book, for you.

Sincerely,

Donald C. Wunsch II, University of Missouri-Rolla

General Chair, [JCNN ‘03

Michael E. Hasselmo, Boston University

Program Chair, [JCNN’ 03

Ganesh Kumar Venayagamoorthy, University of Missouri-Rolla
Program Co-Chair, [JCNN ‘03

DeLiang Wang, Ohio State University

Program Co-Chair, [JCNN ‘03
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2003 International Joint Conference on Neural Networks
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Adaptive force generation for precision-grip lifting by a spectral
timing model of the cerebellum

Antonio Ulloa™, Daniel Bullock, Bradley J. Rhodes

Department of Cognitive & Neural Systems, Boston University, 677 Beacon Street, Boston, MA 02215, USA

Abstract

We modeled adaptive generation of precision grip forces during object lifting. The model presented adjusts reactive and anticipatory grip
forces to a level just above that needed to stabilize lifted objects in the hand. The model obeys principles of cerebellar structure and function
by using slip sensations as error signals to adapt phasic motor commands to tonic force generators associated with output synergies
controlling grip aperture. The learned phasic commands are weight- and texture-dependent. Simulations of the new circuit model reproduce
key aspects of experimental observations of force application. Over learning trials, the onset of grip force buildup comes to lead the load force
buildup, and the rate-of-rise of grip force, but not load force, scales inversely with the friction of the object.

© 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Adaptive timing; Neural model; Synaptic plasticity; Prehension; Learning; Force

1. Introduction

Grasping, lifting, and replacing an object require timed
application of grip forces (to stabilize the object in the hand
during object transport) and load forces (to elevate/lower
the arm—object system to desired heights in the gravity
field). An episode of lifting and lowering an object from and
to a table top involves (Johansson, 1996; Johansson &
Westling, 1987; Wing, 1996): pre-lifting, using the fingers
to apply force perpendicular to the object’s surface at the
points of contact of the fingers with the object; lifting, which
involves continuing increase of grip force and simultaneous
application of load forces sufficient to vertically displace the
arm/object system, and to halt its motion at the desired
height; holding by maintaining grip and load forces;
controlled lowering, by reducing load forces below the
value needed to counteract gravity; and release, by rapid
simultaneous decrease of grip and load forces following
object contact with the table.

After reviewing data on precision grip and prior models
of grip force control, this paper presents simulations of a
new mathematical model of the neural circuit that enables

* Corresponding author. Address: National Institutes of Health, Brain
Imaging & Modeling Section, 9000 Rockville Pike, 10/3C716, Bethesda,
MD 20892, USA. Tel.: 4+ 1-301-435-5141; fax: 4 1-301-480-5625.

E-mail addresses: antonio.ulloa@nih.gov; aup@cns.bu.edu (A. Ulloa),
danb@cns.bu.edu (D. Bullock), brhodes@cns.bu.edu (B.J. Rhodes).

actors to learn to generate appropriate grip forces to prevent
object slippage during lifting. Such learning involves a
transition from reactive to primarily anticipatory appli-
cation of grip forces that reflect the weight and texture of the
object. Also addressed are the problems of reactive load
force generation and temporal coordination between load
and grip force generation.

2. Data on precision grip

This section outlines: roles of motor cortex and
cerebellum in precision grip; trends in the relative timing
of exertion of load force versus grip force; and trends in the
dependence of grip force on object weight and texture.

2.1. Motor cortex and cerebellum in precision grip

Cell recordings and functional imaging of activity in
primary motor cortex (MI) have established close links
between MI activity and precision grip force (e.g. Lemon,
Johansson, & Westling, 1995; Maier, Bennett, Hepp-Rey-
mond, & Lemon, 1993). Complete lesion of MI and
somatosensory cortex impaired monkeys’ ability to pick
up food that could only be accessed with precision grip
(Passingham, 1993). Whereas pre-lesion monkeys used
precision grip, post-lesion monkeys retrieved food using
whole-hand prehension. Reversible inactivation of MI by

0893-6080/03/$ - see front matter © 2003 Elsevier Science Ltd. All rights reserved.
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injection of a GABA agonist produced a similar deficit
(Brochier, Boudreau, Pare, & Smith, 1999). Such results
exemplify the principle (Passingham, 1993) that MI enables
selective activation of one or a few effectors, e.g. single
joints or fingers, when many effectors could contribute.

Inactivation of the dentate nucleus of the cerebellum,
which projects to MI via the thalamus, severely impairs
precision grip. After GABA agonist injection in dentate,
monkeys used only one finger to retrieve food from a hole,
instead of the thumb-index strategy used before (Thach,
Goodkin, & Keating, 1992). This effect probably depends
partly on disrupted dentate input to MI. Inactivation of the
dentate leads to a loss of anticipatory phasic components of
MI cell discharges (Vilis & Hore, 1980). Loss of
anticipatory components of precision grip, which requires
two-finger coordination, may have so degraded the grip that
the animal chose the simpler, one-finger, strategy. Consist-
ently (Serrien & Wiesendanger, 1999), patients with
unilateral cerebellar damage showed timed, ramp-like
anticipatory grip force adjustments on the unaffected side,
but maintained high grip forces on the affected side.
Switching from an efficient, phasic strategy to a costly
tonic strategy may result from loss of the cerebellar adaptive
timing needed for the more efficient strategy.

The intermediate zone of cerebellar cortex, which
dominates the nucleus interpositus (NIP), also shows strong
activity modulation during precision grip. A majority of
Purkinje cells in this zone responded with a decrease in
tonic activity during maintained grasping (Smith &
Bourbonnais, 1981). This decrease would disinhibit the
NIP cells, whose resultant excitatory responses could act via
the red nucleus, or via motor thalamus and MI, to generate a
force increase.

Sufficient repetition of predictable slip events generates
anticipatory discharges in NIP-controlling cerebellar
cortex neurons. Dugas and Smith (1992) trained monkeys
to grasp an object and hold it in a fixed vertical position
for 1s. During a block of trials called slip perturbation
trials, a downward force was briefly applied to the object
after it had been kept at the correct vertical position for
750 ms. The monkey prevented the object from moving
outside a narrow range of vertical heights by phasically
stiffening its wrist and firming its grip. On perturbation
trials, there was a reflex response evidenced by increases
in hand muscle activity and by modulation of discharge in
Purkinje and unidentified cells in the paravermal anterior
lobe of the cerebellum. Activity increased in muscles with
a 30-50 ms latency, and peaked at 50-100 ms after the
perturbation. About half of the recorded Purkinje cells
increased or decreased their simple spike discharges at
about 45 ms after the perturbation. Most of the Purkinje
cells that responded to the perturbation had cutaneous
receptive fields.

After a series of perturbations, a grip force increase, and
an increase in Purkinje cell activity, developed in
anticipation of the perturbation, which occurred reliably

750 ms after the cue tone. Grip force began to diverge
upward relative to control levels 450 ms before the expected
perturbation, and a number of the Purkinje cells increased
their discharge at least 50 ms before the grip force
divergence. As anticipatory discharges developed, the
same cells decreased their reactive, post-perturbation
discharge (rendered unnecessary by the effectiveness of
the anticipatory response). None of the Purkinje cells
exhibited perturbation-related complex spikes, which if
present would indicate excitation of Purkinje cells by
climbing fiber (CF) discharges. The absence of slip-related
CF discharges (in the Purkinje cells studied) may explain
why anticipatory increases were observed in these Purkinje
cell responses rather than anticipatory reductions. Many
other studies of cerebellar activity have indicated that
learned increments in some Purkinje cells’ activities
typically coincide with learned decrements in others
(Berthier & Moore, 1986). Long-term depression (LTD)
of excitatory parallel fiber (PF) inputs to Purkinje cells
depends on coincidence between two inputs to Purkinje
cells: predictive state/context signals carried by PFs and
(putative error) signals carried by perturbation-locked CF
discharges (Hansel, Linden, & D’ Angelo, 2001). Long-term
potentiation (LTP) occurs when predictive stimuli excite
Purkinje cells in the absence of coincident CF discharges
(Hansel et al., 2001). Both LTD and LTP can promote grip
force increments if they occur in separate command
pathways for opponent muscles. CF discharges in response
to cutaneous slip have been reported (Gellman, Gibson, &
Houk, 1985).

2.2. Timing and variation of precision grip force

Timing of grip force with respect to load force. In
Johansson and Westling (1984), subjects grasped and lifted
a 400 g object to about 2 cm above a table top, held it
suspended for 10 s, and then replaced it. On some trials, the
subjects (Ss) were asked to slowly let the object fall, in order
to measure that force level, called the slip force, at which the
object would slip from the fingers. On typical lift—hold—
replace trials, the following phases were observed: (1) One
of the fingers first touched the object ~ 50 ms before the first
application of grip force. (2) Grip force increased but not
load force. This period lasted 80 =* 40 ms. (3) Grip and load
forces increased in parallel. (4) Gravity force was overcome,
and the object lifted, until it reached the intended height. In
this period, grip force reached its maximum value during a
transient overshoot of its steady state. (5) Grip and load
forces stabilized while Ss held the object in the air. (6) A
reduction of load force allowed the object’s position to
slowly approach the tabletop. (7) At contact, grip and load
forces were synchronously terminated.

Rate of rise of grip force during pre-lifting is a function
of object weight. The rate of rise of grip force during
prelifting is greater for heavier objects (Johansson &
Westling, 1988).
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Rate of rise of grip force during pre-lifting is a function
of object texture. More slippery objects induced faster rates
of pre-lift grip force development. In marked contrast, the
rate of rise of load force was the same for all textures
(Johansson & Westling, 1984).

Grip force during lifting is a joint function of the surface
texture and weight of the object lifted (Westling &
Johansson, 1984). The static grip force (grip force
maintained during the holding stage) was an increasing
function of object weight, as was (of course) the minimal
force required to prevent slipping (slip force). A greater grip
force was used when the material was more slippery.

The time to attain a level of grip force adequate for a
given weight/texture is nearly constant for all weights and
textures (Johansson & Westling, 1984, 1988). Such
constancy greatly reduces variability of behavioral timing.

3. Prior models of grip force control

Johansson (1996) proposed a conceptual model for the
application of grip forces and load forces in a lifting task.
Briefly, vision provides information on object position,
object size, and object shape. This information is used to
activate controllers for transporting the hand towards the
object while the fingers are being preshaped. Based on
visual estimates of weight and friction, a set of tactile
responses is predicted to guide planning for the application
of initial grip force to the object. Tactile perceptions of
weight and texture are fed back and compared to the
predicted weight and texture. The mismatch is used to
update memory representations of weight and texture for a
specific object appearance. This memory is assumed to be
retrieved on later occasions to guide anticipatory application
of forces (Gordon, Westling, Cole, & Johansson, 1993). If a
declining grip force results in slip, a resulting slip alert
signal in hand mechanoreceptors triggers a reactive increase
in grip force.

Fagergren, Ekeberg, and Forssberg (2000) modeled the
transfer function of the peripheral motor system involved in
application of grip force. To measure properties of an active
increase in grip force, subjects were instructed to voluntarily
increase grip force in a step-like fashion (from 1 to 50% of
maximum voluntary contraction). To test the reactive
component of grip force, the weight of the object was
unexpectedly increased. Once a transfer function for each
experiment was identified, a third transfer function was
composed to describe a common system involved in active
and reactive force generation.

4. A new model of grip force control

Prior treatments of grip force control (Fagergren et al.,
2000; Gordon et al., 1993; Johansson, 1996) have not
modeled the neural substrates of adaptive control. This

section introduces a new, neurobiologically interpretable,
model that formalizes the role of MI and the cerebellum in
learned transitions from reactive to anticipatory application
of grip forces whose magnitudes are texture- and weight-
dependent. Control is exercised in aperture coordinates
because once the fingers enclose and touch the object, the
targeted hand aperture can be voluntarily decreased by a
further amount. Decreasing the targeted aperture to a value
less than object width would cause the fingers to try to move
beneath the object’s surface, thereby building up a force on
it. The size of the applied force would be a function of the
size of the decrement (below object width) of target
aperture, and of joint stiffness, control of which has been
modeled elsewhere (Bullock & Contreras-Vidal, 1993).

4.1. Model circuit and its operation during learning

A model circuit that learns to generate and apply context-
dependent grip forces in anticipation of load force
application is shown in Fig. 1. It works as follows. Before
learning, there is a significant slip error, &4, the magnitude
of which is needed as an input for the model. As shown at

TUX LURE S WEIGH T 1@
C PONS !
! H

4 FALLOVEY

AALIATA

Fig. 1. Circuit for learned transition between reactive and anticipatory grip
forces. Elements to the left of the dashed line are components of a cerebellar
side-loop that includes inputs from the pons and the inferior olive. Elements
to the right of the dashed line are cortical parts of the grip and load force
generators and the error estimators. Key: C;, pontine context representation
signals for texture and weight; m,, mossy fiber signal; g;. granule cell; L,
Golgi cell; f;. parallel fiber signal; IO, inferior olive: cf, climbing fiber: z;
and w;, weights at adaptive synapses; n, deep cerebellar nuclear (DCN) cell;
O, and Or, outflow force position vectors for aperture and transport
components; S, integrator for grip force adjustments and U, integrator for
load force generation; e, delayed slip error; ey, delayed load error; &,, slip
error; ey, load error; GFs, minimal grip force to avoid slip; LFs, appropriate
load force to overcome object weight.

»
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the top of Fig. 1, e, was computed as the difference between
GFg, the minimal grip force necessary to prevent slip, and
the current net adjustment, S, to grip force. Input g, is
tracked by cell activation variable ¢, to form an internal
estimate of slip error in the frame of the hand. The figure
shows that current net adjustment S is the integral of two
phasic inputs: a reactive input from cell ¢, and a learned
anticipatory input from cell n. The net adjustment § acts on
the hand via aperture/force command O,.

A cerebellar circuit (left side of Fig. 1) enables the
model to learn how to preempt performance errors. In
addition to providing phasic feedback to charge O,, cell
ex sends an error signal to the inferior olive, 10, to
phasically activate CF signals, c¢f. Because CF branches
reach both the cerebellar cortex and the deep cerebellar
nuclear (DCN) cells, the cf signals excite the Purkinje cell
dendritic tree (p) and the DCN cells (n) inhibited by the
Purkinje cell.

A context signal, C;, from the pons, corresponds to the
decision to lift the object with the weight-texture combi-
nation indexed by i. Signal C; activates mossy fibers (MF)
m;, each of which in turn generates a spectrum of granule
cell activations, g;. This spectrum of activations, inhibited
by Golgi interneuron activities [;, generates phasic PF
activities f; with different rise times and amplitudes
(Bullock, Fiala, & Grossberg, 1994). Adaptive synapses z;;
from PFs to Purkinje cells undergo LTD when PF
activations are repeatedly paired with CF activations
h(en). In addition, these synapses undergo long-term
potentiation (LTP, slower than LTD) when PF signals f;
are present but there are no correlated CF signals. There are
also adaptive synapses, w;, from MFs to nuclear cells; these
synapses undergo LTP when MF activation is paired with
CF activation h(ep); LTD (slower than LTP in these
synapses w;) occurs when MFs are activated without
coincident CF activation. Purkinje cells have a baseline
activation that normally inhibits the DCN cell. The DCN
cell is gradually, and context-dependently, released from
this inhibition as the PF-Purkinje cell synapses z; undergo
LTD, because this reduces excitatory inputs to Purkinje
cells while inhibitory inputs are maintained. Whenever the
C; cue is presented, the resultant phasic reduction of
Purkinje cell inhibition of DCN cells allows the DCN cell
activation to express a learned compensation for (what
would otherwise be) a forthcoming error. The signal n from
the DCN cell reaches the command stage O, following
summation with e, and integration to form net compen-
sation S. When a command is sent to increase the hand
aperture T, and thus release the grip on the object, the
integrators must be reset in order to zero the grip force
adjustments. Fig. 1 shows that reset in the model is mediated
by inhibition of the integrator S whenever there is a positive
(opening) aperture velocity command, V.

In order to generate a load force that depends on weight-
related movement errors in the transport component, a
corresponding outflow force position vector in the transport

component (Or in the figure) was introduced, which also
receives force adjustments from an integrator, U. As in the
Vector Integration To Endpoint model (Bullock, Cisek, &
Grossberg, 1998) of MI contributions in arm movement
control, Ot cells provide graded force application modu-
lated by integrated feedback of movement error based on
signals arising in muscle spindles. Fig. 1 shows that U
integrates ep and ey tracks the movement error, er. The
input et is computed as the difference between the minimal
load force, LFg, adequate for the given object weight, and
the current load force, U.

4.2. Technical specifications of the model

Arm transport component. The arm transport component
of Fig. 1 obeys the following equations (Cf. Bullock et al.,
1998; Ulloa & Bullock, 2003):

Dy = «(—Dy + Ty — Py) (1)
Vi = ay(—Vy + G[Dy]") (2)
Pr=Vvyg 3)
and

Or =Py +U 4)

where Dy is the transport difference vector (positive
values only when rectified via [Dr]"), Dy is the time
derivative of Dy, Ty is the internal representation of the
position of the target, Pr is the transport present position
vector, Vr is a velocity command vector, and GO signal G
initiates movement. Parameters « and «y, were set to 30
and 300, respectively. Ot is the outflow force position
vector for the transport component, and U integrates the
load error:

U: Qe (5)

where «p was set to 40. In this study, 1D vectors were
sufficient to represent stages in the control of the elbow
flexion needed to lift the object.

Grip aperture component. The grip aperture com-
ponent obeyed the following system of equations:

Dy = a(—Dp + Ty — Py) (6)
Vo = ay(—Va + GDy) (7)
b, =V (3)
and

Op =Py —S )

where D, is the difference vector for hand aperture, T
is the internal vector representation of the target aperture,
P, is the aperture present position vector, V, is the
aperture velocity vector; O, is the outflow force-position
vector; S is defined by

S = agles + [n]* — Bs[VAITS) (10)
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where ¢, is the slip error signal (which tracks €,) and n
is the nuclear (DCN) cell activity. Here again, 1D
vectors sufficed for current purposes. The term
—Bs[VaAlTS resets the integration of the reactive and
predictive adjustments to grip force, by causing a decay
in cell S whenever the aperture velocity cell, V,, is
positive. This reset is needed to implement releases of
grip force, by eliminating the slip-preventing grip
adjustments and allowing the aperture to relax. The
rate term ag was set equal to 40 and B¢ to 3.
GO signal. The GO signal generator is defined as:

G = ag(—G + Gy() (11)
where
Go(t) = got™* (12)

and ag = 30. G is the GO signal multiplying the difference
vector of each component (Egs. (2) and (7)), and g is a step
input from a decision center in the brain.

Slip error. The slip error, €4, starts being integrated by
e at 0.050 s after the onset of the GO signal, to account for
the delay between onset of muscle activation and onset of
slip signals from mechanoreceptors. The delayed slip error
is defined by

en =, (—ep+ 7, lealD) (13)

where a,, = 50. Factor vy, = 0.08 scales the slip error, &,
which is approximated by

SAOCGFs(M,V) - S. (|4)

Here GFj is the minimal grip force needed to prevent slip
of an object of weight u and texture v.

Load error. The load force error for the transport
component, et, starts being integrated by et at 0.050 s
after the onset of the GO signal, to account for the delay in
detecting load error. The delayed load error is defined by

er=a, (—er+ v, ler]h) (15)

where a, = 50; vy, = 0.25 scales the error, ey, which is
approximated by

ey oc LEs(u) — U (16)

where LF; is a load force adequate for an object of weight u.

Cerebellar component. This component follows the
cerebellar timing model developed by Bullock et al.
(1994) for eye blink conditioning (cf. also Rhodes &
Bullock, 2002). This is one of the simplest models that
give the needed computations, viz.: learning with any
interstimulus interval (ISI) in the range [0.1s,4s] and
timed generation of a context-specific response of
sufficient size to preempt the expected error.

A phasic context signal, C;, activated at r = —0.200 s,
excites cell activities, m;, carried by MFs:

I’i’l,- = —Qa,m; + Bm(l - m,—)(C,- + m,-) (17)

where «,, = 0.2 and B8,, = 10; the positive feedback in Eq.
(17) allows the network to keep a trace of C; in short-term
memory. MFs are directed to two classes of cells, granule
cells and DCN cells. Granule cells were defined as

g = a((1 — gpm; — By(g; + ¥u)I)) (18)

where q; is the rate of activation, drawn from the interval
[1.3,12], of the jth granule cell, where j = 1,2,...,40, B, =
4, and y, = 0.1. Signal /; is a feedback inhibition of granule
cells by Golgi cells:

I = —al;+ Bi(1 = [)(yim; +f)) (19)

where @y = 0.1, B = 5, and y = 0.02. The use of f; in Eq.
(19) and /; in Eq. (18) together imply recurrent signal
processing in the cerebellar cortex. The signals f; conducted
by PFs were

bilg; — A1)
I+l — A"

fi= (20)
where b = 12, ¢ =4, and Ay = 5.

Signals f; are directed to a Purkinje cell through synapses,
25, which adapt according to

ziy = fi((1 = zj) — B.Mea)zy) (21

where the learning rate 8, = 10. Thus weights z;; can exhibit
slow LTP via term f(1 — z;) and faster LTD via term
fiB:h(en)z;. The LTD process is gated by CF signal

en ifepa=0
h(en) = (22)

0  otherwise.

This function provides a means to use only the leading
edge of the slip error signal e,. This is justified by evidence
(Ito, 1984) that the IO provides this type of filtering. The
Purkinje cell firing rate was defined as

1.5 sgn(b)b”

23
1 + b? (23)

p=1+

where b = JT — J~ is the net activity on the dendrites of the
Purkinje cells. Here the excitatory term

N

J' =2 fiua (24)
k=1

and the inhibitory term
N

T = fisu (25)
k=1

where N = 40. Term J  represents the influence of basket
and stellate cells on the Purkinje cell. For present purposes,
the sum in (Eq. 25) had a constant value of 1.0. MFs are also
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directed to the DCN cell, whose activity, n, was defined by

M
n= a,,(—n + Zm,—w,- — p) (26)
i=1

where M is the number of different context cues and «, =
100. The adaptive synapses, w;, from MFs to nuclear cells
were adapted according to

w; = m(e,w; + B (1 — wh(ep)) (27)
where the forgetting rate «,, = —0.001 and the learning rate
B, = 10.
20
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Fig. 2. (A) Single trial evolution of model variables during early phase of
learning adequate grip forces for a 400g silk-covered object. Horizontal
axes give time in s; the horizontal line in the grip force plot shows the
minimal grip force necessary to prevent slip. Key: e,, delayed slip error;
10, inferior olive discharge h(e,): m;, mossy fiber activity; z;, adaptive
parallel fibers-Purkinje cell synapses; w;, adaptive mossy fiber-nuclear cell
synapse; f;, activities in parallel fibers; p, Purkinje cell activity; n, nuclear
cell activity. In the f; and z;; plots, there are many separate traces that
partially superpose. Separation of the z;; values begins to occur just after the
10 discharge. (B) Evolution of model variables during one trial following
asymptotic learning of grip force generation for same object as in A.

5. Results

To show activation dynamics of key internal variables,
simulations of initial learning (Fig. 2A) and asymptotic
phases (Fig. 2B) are shown. The behavioral effect of
learning can be seen by comparing the early learning plots
in Fig. 2A with the asymptotic performance plots in Fig.
2B. Note that although the GO signal takes off at t = 0,
load force and grip force take off (during early learning)
with a lag corresponding to the delay in the error signals
(t=10.050s). During early learning, grip force is
increased in reaction to load force, whereas after learning
grip force onset precedes load force onset. Grip aperture,
which equals object width, remains the same in all stages
of learning. The slip error (e,), which is large during
learning, becomes small after learning. The panel labeled
10 shows how the model processes the slip error to use
only its leading edge to gate cerebellar learning. The
functional generation of the adaptive response is seen by
an evolution from no pause in activity to a deep pause in
the Purkinje cell activity (p), which controls the DCN cell
activation (n). The DCN cell is released from inhibition at
the moment of the Purkinje cell pause and in proportion to
the depth of the pause. The learning that enables the
adaptive response can be appreciated by looking at the
weights of the PF-Purkinje cell adaptive synapses (z) and
the weights of the MF-nuclear cell adaptive synapses (w).
In each case, w; = 1.0 after learning, whereas the below
1.0 deviations of those z; associated with appropriately
timed PF signals scaled directly with the magnitude of the
required grip force, and with the depth of the Purkinje cell
pause. That the learned w; values were constant while the
learned z; values varied with object weight and texture
(not shown) indicates that the z; changes were causative
for both adaptive timing and scaling of the amplitude of
the cerebellar response.

To show that the model is able to simultaneously
store and recall grip force adjustments for different
weights and textures, simulations were run with various
weights and textures. Each combination of weight and
texture was represented by a distinct context cue, C;, and
a distinct GFg (Eq. (14)) was used for each texture-
weight combination. The circuit was able to generate
anticipatory grip forces that depended upon the presented
cue (Fig. 3). After learning converged, the two sets of
weights, z; and w;, maintain values that preempt the slip
onset for each of the presented cues. When the 400 g
objects are presented (Fig. 3A), the anticipatory grip
forces are adequate for each of the three textures. As in
Fig. 2B, the grip force for each texture begins to grow
before the onset of load forces. The DCN cell activation
and resultant anticipatory grip force are larger the more
slippery the surface, but with equal rise times. Therefore,
both the rate of rise of grip force and the final grip force
value are larger the more slippery the surface. Fig. 3B
shows model performance with different weights but
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Fig. 3. (A) Simulations of grip force generation for a 400 g object, covered
with silk, suede or sandpaper. (B) Simulations of grip force generation for
suede-covered objects of three weights (200, 400, and 800 g).

the same texture. Similarly selective, preemptive, error
correction can be observed. As in Fig. 2B, the grip force
onsets occur in anticipation of load force onset for the
three weights. An appropriate grip force is produced,
with larger rates of rise and final values for heavier
objects, but the grip force rise times for the three weights
are equal.

6. Discussion and conclusions

An adaptive circuit was devised to solve the problem of
anticipatory application of grip forces when lifting objects
of different textures and weights. The cerebellar component
of this circuit uses slip signals to adapt the motor commands
responsible for exerting just enough force to stabilize the
lifted object in the frame of the hand. The adaptive grip
force model:

1. Works as a side loop in the aperture control part of a
reach—grasp circuit. This circuit makes grip force
adjustments in response to slip signals resulting from
the application of load forces on the object.

2. Works in anticipation of the activation of the
voluntary lifting movement to preempt slippage that
would otherwise be produced by that movement. The
cerebellar component was able to generate a pre-
dictive adjustment to grip force, after the presentation

of a context cue corresponding to a visual estimate of
object weight and texture. The learned adjustment to
grip force was applied in anticipation to load force
onset.

3. Resets its compensation when the aperture is volunta-
rily reset to a larger size, to allow relaxation of the
grip aperture.

The cerebellar model of Medina and Mauk (1999)
attributed most of the asymptotic memory load in cerebellar
learning to the plastic synapse between MFs and DCN cells.
Recent data (Hesslow, Svensson, & Ivarsson, 1999) and our
results instead suggest that the PF-Purkinje cell synapse can
control both timing and amplitude of predictive responses.
Our results also accord with the major properties of human
grip force adjustment, namely: grip force onset precedes
load force onset, grip force and its rate of increase during
lifting are functions of object texture and weight, and time to
maximum grip force is constant across different weights and
textures.
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Abstract

We propose a novel technique for the design of radial basis function (RBF) neural networks (NNs). To select various RBF parameters, the
class membership information of training samples is utilized to produce new cluster classes. This allows emphasis of classification
performance for certain class data rather than best overall classification. This allows us to control performance as desired and to approximate
Neyman—Pearson classification. We also show that by properly choosing the desired output neuron levels, then the RBF hidden to output
layer performs Fisher discrimination analysis, and that the full system performs a nonlinear Fisher analysis. Data on an agricultural product
inspection problem and on synthetic data confirm the effectiveness of these methods.
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1. Introduction

Radial basis function (RBF) neural networks (NNs) are
attractive due to their fast training and simplicity. They have
been used in function approximation (Poggio & Girosi,
1990) [1], pattern recognition (Krzyzak, Linder, & Lugosi,
1996), and signal processing (Chen, Mulgrew, & Grant,
1993). An important consideration in designing RBF
networks is the hidden layer (Billings & Zheng, 1995;
Bruzzone & Prieto, 1998; Chen, Cowan, & Grant, 1991;
Moody & Darken, 1989; Musavi, Ahmed, Chan, Faris, &
Hummels, 1992; Vogt, 1993). Much work exists (Moody &
Darken, 1989; Musavi et al., 1992; Vogt, 1993; Bruzzone
& Prieto, 1998) using clustering to select the RBFs to use.
The original RBF NNs (Poggio and Girosi, 1990) were
concerned with representing nonlinear mapping functions
by RBF interpolation; thus clustering methods used were
different and many RBF neurons were used. For classifi-
cation applications, a large number of RBFs are not
desirable for on-line computational reasons and for good
generalization (similar training and test set scores). Most of
the clustering methods (Moody & Darken, 1989; Vogt,
1993) used in RBF NNs did not consider the class of the
samples when clustering (this is not attractive for a
classification application). For classification applications,

* Corresponding author. Tel.: +1-412-268-2464; fax: + 1-412-268-6345.
E-mail address: casasent@ece.cmu.edu (D. Casasent).

other RBF cluster selection methods are needed. For
classification applications, others (Bruzzone & Prieto,
1998; Musavi et al., 1992) allow clusters with very few
samples (this produces poor mean and variance estimates
and poor generalization).

Another issue, which is not considered in most work, is
the effect of the choice of the desired outputs on system
performance. Different choices result in different perform-
ance (Bishop, 1995). For two-class cases, a common choice
of the desired outputs is 1 for one class and 0 for the other.
With this choice and the mean square error cost function, the
output neuron level can be the posterior probability (Richard
& Lippmann, 1991) that the input is in class 1 or 2.
However, practical networks are often far from ideal
estimators due to the fact that the training data is not
sufficient to specify the network and that the network is not
sufficiently complex to model the posterior distribution
accurately. Therefore, the choice [0,1] does not necessarily
minimize the probability of error.

There are many applications in which minimizing the
probability of error is not the best criterion to design a
decision rule because the misclassifications of samples from
different class may have different consequences. For
example, in agricultural product inspection problems, the
goal is to reduce the amount of bad products to some level
while not removing more than a certain percentage of the
good products. The Neyman-—Pearson (N-P) criterion
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