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Preface

The main objective of this book is to present all the relevant informa-
tion required for RF and micro-wave power amplifier design including
well-known and novel theoretical approaches and practical design tech-
niques as well as to suggest optimum design approaches effectively com-
bining analytical calculations and computer-aided design. This book
can also be very useful for lecturing to promote the analytical way of
thinking with practical verification by making a bridge between theory
and practice of RF and microwave engineering. As it often happens, a
new result is the well-forgotten old one. Therefore, the demonstration
of not only new results based on new technologies or circuit schematics
is given, but some sufficiently old ideas or approaches are also intro-
duced, that could be very useful in modern practice or could contribute
to appearance of new ideas or schematic techniques.
As a result, this book is intended for and can be recommended to:

® University-level professors and scientists, as possible reference and
well-founded material for creative research and teaching activity
that will contribute to strong background for graduate and postgrad-
uate students

® R & D staff, to combine the theoretical analysis and practical aspect
including computer-aided design and to provide a sufficient basis for
new ideas in theory and practical circuit technique

® Practicing RF designers and engineers, as an anthology of many well-
known and new practical RF and microwave power amplifier circuits
with detailed description of their operational principles and applica-
tions and clear practical demonstration of theoretical results

In Chapter 1, the two-port networks are introduced to describe the
behavior of linear and nonlinear circuits. To characterize the nonlin-
ear properties of the bipolar or field-effect transistors, their equivalent
circuit elements are expressed through the impedance Z-parameters,
admittance Y-parameters, or hybrid H-parameters. On the other hand,

vii



viii Preface

the transmission ABCD-parameters are very important in the design
of the distributed circuits as a transmission line or cascaded elements,
whereas the scattering S-parameters are widely used to simplify a mea-
surement procedure.

The main purpose of Chapter 2 is to present widely used nonlinear cir-
cuit design techniques to analyze nonlinear power amplifier circuits. In
general, there are several approaches to analyze and design these non-
linear circuits, depending on their main specifications—for example,
an analysis in time domain when it is necessary to determine the tran-
sient circuit behavior or in frequency domain to provide improvement of
the power and spectral performances when both parasitic effects such
as instability and spurious effects must be eliminated or minimized.
Using the time-domain technique it is quite easy to describe the circuit
by differential equations, whereas frequency-domain analysis is more
explicit when a relatively complex circuit can be reduced to one or more
sets of immitances at each harmonic component.

In Chapter 3, all the necessary steps to provide an accurate device
modeling procedure starting with the determination of the small-signal
equivalent circuit parameters are described and discussed. A variety
of nonlinear models for MOSFET, MESFET, HEMT, and bipolar de-
vices including HBT's, which are very prospective for modern microwave
monolithic integrated circuits of power amplifiers and oscillators, are
presented. In order to highlight the advantages or drawbacks of one
nonlinear device model over the other, a comparison of the measured
and modeled volt-ampere and voltage-capacitance characteristics or a
frequency range of model application is made.

A concept of impedance matching and the impedance-matching tech-
nique, which is very important when designing power amplifiers, is
presented in Chapter 4. First, the main principles and impedance-
matching tools such as the Smith chart are described, giving the start-
ing point of the matching-design procedure. As an engineering solution
in general depends on the different circuit requirements, the designer
should choose the optimum solution among a variety of the matching
networks including either lumped elements or transmission lines or
both of them. To simplify and visualize the matching-design procedure,
an analytical approach, which allows calculating the parameters of the
matching circuits using simple equations, and Smith chart traces is
discussed and illustrated with several examples of the narrowband
and broadband RF and microwave power amplifiers using bipolar or
MOSFET devices. Finally, the design formulas and curves are presented
for different types of transmission lines including stripline, microstrip
line, slotline, and coplanar waveguide.

Chapter 5 describes the basic properties of three-port and four-port
networks as well as a variety of different combiners, transformers, and
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directional couplers for RF and microwave power applications. So, for
power combining in view of insufficient power performance of the ac-
tive devices, it is best to use the coaxial cable combiners with ferrite
core to combine the output powers of RF power amplifiers intended for
wideband applications. As the device output impedance for high power
levels is usually too small, to match this impedance with a standard
50-$2 load, it is necessary to use the co-axial line transformers with
specified impedance transformation. For narrowband applications, the
N-way Wilkinson combiners are widely used due to the simplicity of
their practical realization. At the same time in microwaves, the size of
the combiners should be very small. Therefore, the commonly used hy-
brid microstrip combiners including different types of microwave hybrid
and directional couplers are described and analyzed.

Chapter 6 represents the fundamentals of the power amplifier de-
sign, which is generally a complicated procedure when it is necessary
to provide simultaneously accurate active device modeling, effective
impedance matching depending on the technical requirements and op-
eration conditions, stability in operation, and ease in practical imple-
mentation. Therefore, at the beginning of the chapter the key defini-
tions of different power gains and stability are introduced. For a stable
operation mode of the power amplifier, it is necessary to evaluate the
operating frequency domains where the active device may be poten-
tially unstable. To avoid parasitic oscillations, the stabilization circuit
technique for different frequency domains from low frequencies to high
frequencies close to the device transition frequency is analyzed and dis-
cussed. One of the key parameters of the power amplifier is its linearity,
which is very important for many TV and cellular applications. There-
fore, the relationships between the output power, 1-dB gain compres-
sion point, third-order intercept point, and intermodulation distortions
of the third and higher orders are given and illustrated for different
active devices. The basic classes of the power amplifier operation A,
AB, B, and C are introduced, analyzed, and illustrated. The device bi-
asing conditions and examples of bias circuits for MOSFET and bipolar
devices to improve linearity or to increase efficiency are shown and dis-
cussed. Also the concept of push-pull amplifiers and their circuit design
using balanced transistors is given. In the final section, the numerous
practical examples of power amplifiers using MOSFET, MESFET, and
bipolar devices in different frequency ranges and for output powers are
shown and discussed.

Modern commercial and military communication systems require
high-efficiency long-term operating conditions. Chapter 7 describes in
detail the possible circuit solutions to provide a high-efficiency power
amplifier operation based on using different overdriven (Class B,ClassF,
and Class E) classes of operation or newly developed subclasses,
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depending on the technical requirements. In Class F amplifiers
analyzed in frequency domain, the fundamental and harmonic load
impedances are optimized by short-circuit termination and open-circuit
peaking in order to control the voltage and current waveforms at the
drain of the device to obtain maximum efficiency. In Class E amplifiers
analyzed in time domain, an efficiency improvement is achieved by re-
alizing the on/off switching operation with special current and voltage
waveforms so that high voltage and high current do not exist at the
same time. The parallel-circuit Class E load network configuration can
be easily implemented in the broadband high-efficiency power ampli-
fier design. The Class E load network with a quarterwave transmission
line provides an addidtional suppression of even harmonic components.

In many telecommunication, radar or testing systems, the transmit-
ters operate in a very wide frequency range. Chapter 8 describes the
power amplifier design based on a broadband concept that provides
some advantages when there is no need to tune the resonant circuit pa-
rameters. However, there are many factors that restrict the frequency
bandwidth depending on the active device parameters. So, it is suffi-
cicently easy to provide multioctave amplification from very low fre-
quencies up to ultrahigh frequencies using the power MOSFET devices
when loss gain compensation is easily realized. At higher frequencies
when the device input impedance is significantly smaller and the in-
fluence of its internal feedback and parasitic parameters is substan-
tially higher, it is necessary to use multisection-matching networks with
lumped and distributed elements. A variety of broadband power ampli-
fiers using different frequency ranges are presented and described.

Chapter 9 describes the different approaches to improve linearity and
efficiency of the power amplifiers in telecommunication systems. To im-
prove the efficiency of operation, the Kahn envelope and restoration and
envelope-tracking techniques, the outphasing and Doherty power am-
plifier archi-tectures, and the switched-mode and dual-path power am-
plifier configurations are shown and analyzed. To improve the linearity
of operation, the feedforward linearizing technique and predistoration
linearization circuit schematics are described and presented. Special
attention is payed to practical realization of monolithic integrated cir-
cuits of HBT and CMOS power amplifiers for handset applications using
modern technologies.

Andrei Grebennikov
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Chapter

Two-Port Network
Parameters

Two-port-equivalent circuits are widely used in radio frequency (RF)
and microwave circuit design to describe the electrical behavior of both
active and passive devices. A two-port network (whose elements
are expressed through the impedance Z-parameters, admittance Y
parameters, or hybrid H-parameters) is most suitable to character-
ize the nonlinear properties of the active devices, bipolar or field-effect
transistors, when designing power amplifiers or oscillators. Transmis-
sion ABCD-parameters of a two-port network are very convenient for
designing the distributed circuit as transmission lines or cascaded ele-
ments. Scattering S-parameters are used to simplify the measurement
procedure.

This chapter discusses the main properties of two-port network para-
meters, as well as the ratios between the different systems. In addition,
examples are given to illustrate how to best analyze power amplifiers
and oscillators. The final part of this chapter describes the transmission
line and its main parameters. Additional information on more specific
aspects of two-port network circuits can be found in Refs. [1-4] listed
at the end of the chapter.

Traditional Network Parameters

The basic diagram of a two-port nonautonomous transmission system
can be represented by the equivalent circuit shown in Fig. 1.1, where Vg
is the independent voltage source, Zs is the source impedance, LN is the
linear time-invariant two-port network without independent source,
and Zy, is the load impedance. Two independent phasor currents, I
and I, (lowing across input and output terminals), and phasor voltages,
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Zs h Z.

} -

Figure 1.1 Basicdiagram of two-port nonautonomous trans-
mission system.

Vi1 and Vs, characterize such a two-port network. For autonomous os-
cillator systems, in order to provide an appropriate analysis in the
frequency domain of the two-port network in the negative one-port
representation, it is sufficient to set the source impedance to infinity.
For power amplifier and oscillator design, the elements of the matching
or resonant circuits, which are assumed to be linear or appropriately
linearized, can be found among the LN -network elements, or additional
two-port linear networks can be used to describe their frequency domain
behavior.

For a two-port network, the following equations can be considered to
be imposed boundary conditions:

Vi+ Zsl = Vs 1.1)
Vo+ Z1,1, =V, (1.2)

Suppose that it is possible to obtain a unique solution for the linear
time-invariant circuit shown in Fig. 1.1. Then the two linearly indepen-
dent equations, which describe the general two-port network represen-
tation in terms of circuit variables Vi, V;, I, and I, can be expressed
in matrix form as

M]IV]+I[NII]=0 (1.3)

or

mi1Vi + migVo + ninli + niglo =0 } (1.4)

mo1 Vi + moo Vo + no1 i + noglo =0

In Eq. (1.3), the complex 2 x 2 matrices [M] and [N] are independent
of the source and load impedances Zs and Z;, and voltages V5 and Vi,
respectively; they depend only on the circuit elements inside the LN
network.

If matrix [M] in Eq. (1.3) is nonsingular when |M|#0, then this
matrix equation can be rewritten in terms of [I] as

[V]=-[MI"'[NII]=I[Z]l] (1.5)
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where [Z] is the open-circuit impedance two-port network matrix. In
scalar form, matrix Eq. (1.5) is given by

Vi=Zuh + Zis1, (1.6)
Vo = Zo1h + Zos Iy (1.7)

where Z;; and Zy, are the open-circuit driving-point impedances, and
Zy2 and Zy; are the open-circuit transfer impedances of the two-port
network. The voltage components V; and V2, due to the input current I;
are found by defining I, = 0 in Egs. (1.6) and (1.7), which results in an
open output terminal. Similarly, the same voltage components V; and
Vs are determined by setting I; = 0 when the input terminal becomes
open-circuited. The resulting driving-point impedances can be written
as follows:

V; V
Zy =2 Zog = 2 (1.8)
I |0 I |-
The two transfer impedances are
\% V;
Zy = 1_2 Zyp= L (1.9)
11—0 I -0

Dual analysis can be used to derive the short-circuit admittance ma-
trix when the current components I; and I, are considered as outputs
caused by V; and V,. If matrix [N] in Eq. (1.3) is nonsingular when
IN| # 0, this matrix equation can be rewritten in terms of [V'] as

[I1=~INIT'IMIV] = [Y][V] (1.10)

where [Y'] is the short-circuit admittance two-port network matrix. In
scalar form, matrix Eq. (1.10) is written as

I =Y11Vi + Y12 Vs (1.11)
L =Y Vi + Yoo Vs (1.12)

where Y1; and Yy are the short-circuit driving-point admittances, and
Y12 and Y51 are the short-circuit transfer admittances of the two-port
network. In this case the current components I; and I, due to the in-
put voltage source V;, are determined by setting V, = 0 in Eqgs. (1.11)
and (1.12), which creates a short output terminal. Similarly, the same
current components /; and I, are determined by setting V; = 0 when
the input terminal becomes short-circuited. As a result, the two driving
point admittances are

I
Yin= = Yoo = = (1.13)
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The two transfer admittances are

I
Yo1 = —

Yio = — 1.14
7 12 ( )

Vo=0 V2 lvi=o

In some cases, an equivalent two-port network representation can be
obtained to express voltage source V; and output current I; in terms
of input current I; and output voltage V2. By solving Eq. (1.4), if the
submatrix

nmi1  nig
ma1 ng2

is nonsingular, then
-1 -
I I
[V1] __|™u n2 nip Mg 1] _ (H] 1 (1.15)
I mp1  Nag ng1 mp | | Ve \2
where [H] is the hybrid two-port network matrix. In scalar form, it is
best to represent matrix Eq. (1.15) as

Vi = hilh + higVa (1.16)
Iy = ho1Ih + hoo Vo (1.17)
where A1, hig, h21, and hgg are the hybrid H-parameters. The voltage

source V; and current component I are determined by defining V2 = 0
for the short output terminal in Eqgs. (1.16) and (1.17):

I
Vi hoy = 2

= = (1.18)
V=0 L

Va=0

where h,; is the driving-point input impedance and hg; is the forward
current transfer function. Similarly, the input voltage source V; and
output current I, are determined by defining I; = 0 when the input
terminal is open-circuited:

(1.19)

where A3 is the reverse voltage transfer function and Ay is the driving-
point output admittance.

Transmission parameters, often used for passive device analysis, are
determined for independent input voltage source V; and input current
I; in terms of output voltage V; and output current I. Solving Eq. (1.4),

if the submatrix
mi nn
mg1 ngy
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ZS I[ —]2

Figure 1.2 Basic diagram of loaded two-port trans-
mission system.

is nonsingular, then we obtain

=)
Vi Vs Vs
1 - _ miy niy my2 nig 2 — [ABCD] 2 (1.20)
L mp1  ngy M2 ngs | | =Ly I
where [ABCD] is the forward transmission two-port network matrix.
In scalar form, we can write

Vi = AV, — BI, (1.21)
L =CV; - DI, (1.22)

where A, B, C, and D are the transmission parameters. The voltage
source V; and current component I; are determined by defining I, = 0
for the open output terminal in Egs. (1.21) and (1.22):

A _ 4

Val1,—0 Va

where A is the reverse voltage transfer function and C is the reverse

transfer admittance. Similarly, input-independent variables V; and L

are determined by defining V; = 0 when the output terminal is short
circuited:

(1.23)

L,=0

Vi L
_E D

B = =
Va=0 L

(1.24)
V=0
where B is the reverse transfer impedance and D is the reverse current
transfer function. The reason that a minus sign is associated with I,
in Egs. (1.20) and (1.21) is that historically, for transmission networks,
the input signal is considered as going to the input port whereas the
output current is flowing to the load. The current —I entering the load
is shown in Fig. 1.2.

Scattering Parameters

The concept of incident and reflected voltage and current parameters
can be illustrated by the one-port network shown in Fig. 1.3, where
network impedance Z is connected to the signal source Vg with in-
ternal impedance Zg. In a common case, the terminal current I and



