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CHAPTER I

INTRODUCTION

Industrial Dust Explosion Hazards

Every year people are killed and equipment is des-
troyed by dust explosions. The present death rate from
grain dust explosions alone averages between 5 and 15
people per year. During 1977 and 1978, the destruction
caused by grain dust explosions amounted to over 100
million dollars. Last year, 1986, several people died in
a coal dust explosion in Japan. The potential explosion
hazard extends to almost every industry that handles
combustible bulk powders. Some of the powders that have
been tested for explosibility by the U.S. Bureau of Mines
are grain dusts, plastic dusts, metal dusts, and a large
group of mixed dusts (Aldis and Lai, 1979). In Germany,
the Berufsgenossenschaftliches Institut fur
Arbeitssicherheit has reported test results for 809
powders (Field, 1982).

The phenomenon referred to in the popular press as a
dust explosion is either a deflagration or a detonation.
A deflagration is an exothermic process in which the gas
pressure is relatively uniform with respect to space. A
detonation is a process in which the pressure difference
between the reactants and the combustions preoducts is so

large that a shock wave forms at the interface. The shock



moves into the reactants at the speed of sound of the
combustion products. The reactants are heated by the
shock, which then causes the reactants to deflagrate very
quickly. This deflagration releases heat and moles of
gas, causing a high pressure which, in turn, supports the
shock. This concept of a detonation is called the 2ZND
detonation theory, after the three researchers, Zeldovich,
von Neumann, and Doring, who independently developed the
analytical representation of the detonation process
(Williams, 1985).

A detonation in an industrial setting is a devastating
occurrence. It is possible to reduce the effects of a
deflagration by venting the gas pressure formed by the
combustion process. Since a deflagration is approxiﬁately
a constant pressure process, the vent keeps the gas
pressure from increasing above the design limits of the
building or the container holding the combusting reactants.
However, if a detonation occurs, and if the vent is behind
the detonation front, then the detonation will proceed
ahead, and its progress will continue uninterrupted. Since
the detonation is traveling at the speed of sound of the
combustion products, the rarefaction front caused by the
vent can never catch up with the detonation.

In this thesis, theoretical studies of particulate
combustion are described. Two widely differing combustion

regimes are considered, packed bed combustion, as might



occur in a fractured solid rocket motor, and dispersed
combustion, as might occur in a propellant processing
facility. Detonations will be emphasized due to their
disastrous potential. This thesis begins with a litera-
ture review giving a brief description of the efforts of
former researchers. Both experimental and theoretical
studies are examined.

Literature Review

Dust explosions have been reported for over 200 years
and have been studied for nearly as long. The history of
dust explosions has been reviewed by several researchers
(for example, Palmer (1972), Aldis and Lai (1979), and
Field (1983)). This review is, therefore, restricted to
only those works that are directly applicable to the
present study.

A few papers on dust explosions and other related
areas will be described. The first papers present experi-
mental lab scale dust explosion data and include some
theoretical analysis. The next work, by Butler, et al.
(1982), is concerned with the transition of a shock in a
reactive propellant bed to a detonation. A paper by
Gidaspow, et al. (1986) presents data on the semi-free
field initiation of a suspended pyrotechnic material. The
paper by Tamanini (1985) describes a research program on
the deflagration of grain dust in a large combustion

champer. The paper by Gidaspow, et al. (1984a) illustrates



the numerical technigque that is planned for use in this
present program.

The three lab scale test programs have examined three
different materials. Ogle (1986) studied aluminum dust
deflagrations in a 20 liter spherical chamber. His work
is the best combined experimental and theoretical research
programs in the dust explosion area. Ogle's approach is
based on principles of chemical kinetics and, what he
terms, transport drive fluid mechanics methodologies.
Using existing literature on the combustion of aluminum,
he was able to develop a viable reaction rate model which
could then be used to describe his experimental results.

The report from the Bureau of Mines by Hertzberg,
et al. (1979) examined several experimental features of
coal dust explosion testing. The repert had little
theoretical analysis, but it did present an excellent
experimental research program. The program examined the
effect of ignition energy on the minimum concentration
necessary for an explosion. Subsequently, it was reported
by Bartknect (1981) that it was necessary to use a chemical
igniter which released at least 10 kJ to obtain results
which scaled. Hertzberg goes on to examine the effect of
the dust particle size on the rate of pressure rise in the
combustion chamber. This rate is one of the most critical
terms that are measured in a dust explosion test and is

used to determine the hazard class of the material.



Hertzberg reports measursments of the temperature of both
the dust particles and the gas surrounding the particles.
The chamber used by Hertzberg was a 8 liter cylinder with
curved ends. The chamber had a length to diameter ratio
of approximately one. A serious effort was made to verify
the dust concentration in the vessel prior to ignition.
The investigators used a light attenuation system
calibrated with a material of known particle size and
dispersal characteristics.

Grain dust was studied by Garrett (1981) and Lai,
et al. (1980). The explosion chamber Garrett used was the
Hartmann bomb. The Hartmann bomb has been reviewed by the
American Society for Testing Methods (ASTM) as a standard
device for stﬁdying dust explosions. {t has, however,
been reported by Bartknecht (1981) that the Hartmann bomb
tends to underestimate the maximum rate of pressure rise
as determined by vessels of differing sizes. When vessels
of differing sizes are used, it is necessary to use the
cube root scaling law to relate the results. When the
results obtained by the Hartmann bomb are scaled using
+his law, and then compared to the results obtained with,

3 size,

for example, spherical chambers of 20 liter and 1 m
the curves do not agree. The reason given to explain this
result is increased radiative heat loss in the Hartmann

bomb. It has a minimum dimension of 4 inches compared to

approximately 12 inches in the 20 liter spherical chamber.



