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Preface

In the chemical and allied industries, there is a continuously rising trend towards separa-
tion processes that are operated in packed columns with systematically stacked or randomly
dumped beds. It was initiated by the 1973 oil crisis and the associated demand for saving
fuel by optimum design and operation of the processes. Another factor that has contributed
towards the widespread adoption of packed beds in industry has been the increasing severity
of ecological legislation. Since they can be operated under more moderate conditions,
packed columns are superior to plate columns in coping with the demands of saving energy
and protecting the environment.

Thus packed columns can offer the following advantages:

— They allow lower energy consumption in separation processes that entail a large number of
theoretical stages.

— They can more readily satisfy the requirements for the economic use of heat pumps.

- They permit thermally instable mixtures to be separated at lower temperatures at the foot
of the column and can thus minimize or even completely avoid products of decomposition
or polymerization reactions that may be responsible for pollution.

- In absorbers, particularly those for off-gas scrubbing, they require compressors of lower
power ratings than those installed in plate columns.

Beds of packing are also being used to an increasing extent for direct heat transfer
between liquids and gases (or vapours) and for liquid-liquid extraction. The trend runs par-
allel to striking improvements in the design of traditional packing and has also led to the
development of completely new packing geometries. However, the results obtained in pro-
cess engineering studies did not always agree satisfactorily with the traditional relationships
given in the literature. Consequently, research work had to be directed at devising new
correlations and models for the efficiency and operating characteristics of packed columns
with the aim of developing physically well-founded design methods that are applicable to all
types of packing used in industry. The book “Packed Towers in Processing and Environ-
mental Technology” is intended as a contribution towards this aim.

The reliability of the methods presented here has been demonstrated by results gained in
comprehensive experiments that embraced more than sixty types of metallic, ceramic, and
plastics packing of various geometries and dimensions and were performed on systems that
covered a wide range of physical properties in the liquid and the gas or vapour phases.

These pilot-plant experiments were carried out over a period of more than 20 years in the
course of the author’s activities in research and industry. The results thus obtained provided
a sound basis upon which a theoretical model could be developed to describe the hydrody-
namics and mass transfer in packed columns. The experiments also served to verify the
scientific accuracy of the models and thus to ensure close agreement between theory and
practice.

The author has presented papers on the subject at meetings held by various engineering
institutions, including the VDI, EFCE and AIChE, and at the ACHEMA, CHISA and
ACHEMASIA fairs. He has also held seminars on packed columns, e.g. in the Conicet
Institute, Santa Fe and Bahia Blanca, Argentina; at the Glitsch Symposium in Dallas, Texas,
USA; the Korean Institute of Energy Research in Taejon, South Korea; the Petrobras in Rio
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de Janeiro; the Belo Horizonte University in Brazil, and the Tientsin University in China.
The book has been written in response to many requests for a review of the engineering
aspects in packed columns.

The author wishes to take this ppportunity of expressing his most sincere thanks to all
those who assisted him in the experimental work, to Dr. M. Schultes for his valuable cooper-
ation in evaluating the examples, to M. Ernst for her commitment in typing the German
manuscript, to Th. Cipa for his assistance in proof-reading, and - in particular — to J. W,
Fullarton for translating the work into English.

Bochum, January 1994 R. Billet
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Key to symbols

a [m?*/m®] total surface area per unit packed volume

a [s/m] packing area per unit efficiency and per unit volumetric vapour
flow rate

ay [m%/m?] hydraulic area of packing per unit volume of packed bed

apy [m%/m?] effective interfacial area per unit packed volume

a, [m/s] column shell area per unit efficiency and per unit volumetric
vapour flow rate

A {s/m] constant, specific for the packing

Ay [m?] cross-sectional area of an individual channel

A, [m?] total area of packing

A, [m?] free cross-sectional area

B s] constant, specific for the packing

B [kmol/h];[kg/h] flow rate of bottom product

¢ [kmol/m’] concentration

cp [DM/m’] costs per unit volume of packing

Cps [DM/m] costs per unit height of column

¢, [DM] costs for one redistributor in a column of diameter dg

s [DM/m?] costs per unit area of column shell

C [DM]; [DM/m’] costs; costs per unit volume of the packed column

Cc [DM] capital investment costs for a packed column

Cy packing constant to allow for liquid holdup

CL packing constant to allow for mass transfer in liquid

Cp packing constant to allow for pressure drop

Cs costs of the packing to be evaluated in relation to those of a
random bed of 50-mm Pall rings

Cy packing constant to allow for mass transfer in gas

d {m] size of an element of packing

dy, [m] hydraulic diameter

dp [m] particle diameter

ds [m] column diameter

D [DM/m] costs factor, specific for the material and method of production of
the packing

D [m?/s] diffusion coefficient of transferring component

D [kmol/h];[kg/h] flow rate of distillate (overhead product)

e relative efficiency, or energy parameter

E [DM/mz] costs factor, specific for the material and method of construction
of column shell

E. column efficiency

Ey [1/s] volumetric packing efficiency

fs wall factor

fv vapour load factor

fw wetting factor
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Key to symbols
[DM/m?)

[kmoi/h];[kg/h]
[kg"2m™/%s71]
(m/s?]
[kJ/kmol]
[kJ/kmol]
[m3/m’)

[m]

[m]

[m]

[m]

{m/s]

[DM s/m’]

[DM s/m’]

[m]

[kmol/h]
[kmol/h];[kg/h]
[kmol/kmol]

[m™)

[bar];[mbar]
[mbar];[mmWG]
[bar];[mbar]

[kJ/h]
[m]
[m]

[kmol/h]
[s]

fs)

(K]
[m*m2s7]
[m/s)
[m/s]
[m/s]

Is]

costs factor, specific for the material and method of construction
of column shell

flow rate of feed

vapour capacity factor related to the free column cross-section
acceleration due to gravity

molar enthalpy

molar condensation; evaporation enthalpy

liquid holdup

effective height of fill of column packing

height of inlet zone in a bed of packing

height of a mass transfer unit

overall height of a mass transfer unit

overall mass transfer coefficient

total costs, i.e. for the bed of packing and the column shell, per
unit efficiency and per unit volumetric vapour flow rate
packing costs per unit efficiency and per unit volumetric vapour
flow rate

length of flow path for phase contact

flow rate of carrier liquid

flow rate of liquid

slope of equillibrium line

maldistribution

number of flow channels

number of theoretical stages corresponding a bed height H
number of separation units

packing density

number of transfer units in a phase

number of overall transfer units

pressure

pressure drop

boiling pressure of a component

liquid distribution coefficient

energy consumption

film thickness

thickness of the basic material, i. e. sheet, foil or fibre, of the
packing elements

flow rate of carrier steam

time

liquid phase residence time

temperature

liquid load (also related to hour)

local liquid velocity

superficial gas or vapour velocity

average effective gas or vapour velocity

volume of packing material per unit efficiency and volumetric gas
or vapour load



[m?/(m?/s)]
[kmol/h]
[kmol/h);[kg/h]
[ke/m’)

[kg ms™]
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Greek symbols

a

B [m/s]

€ [m3/m?)
n

n [ke m™s]
Ne

A

n [kg;kmol]
v [m?/s]

5

o [ke/m’]
c [kg/s?]
T [s]

Ty [N/m?]
@

LY

Subscripts

B

C

D

e

F

Fl

L

o

P

Ph

Key to symbols XV

specific column volume

flow rate of carrier gas

flow rate of gas or vapour

specific gravity of packing

packing weight per unit volumetric flow rate of gas or vapour and
unit efficiency

mole fraction in liquid phase

molar load fraction of transfer component in liquid

mole fraction in gas or vapour phase

molar load fraction of transfer component in gas or vapour
number of liquid distributor outlets

number of flow channels per unit area of column cross-section

relative volatility

mass transfer coefficient
void fraction of packing
efficiency

dynamic viscosity

column efficiency

stripping factor

molecular mass; molar mass
kinematic viscosity
coefficient of resistance
mass density

surface tension

duration of contact between the phases
shear stress in gas flow
diameter ratio

flow parameter

bottom product

continuous phase

distillate (overhead product)
effective

feed

flood point

liquid

surface

pilot plant

interface



XVI Key to symbols

film thickness; column shell
loading point

technical or industrial scale
vapour or gas

wetting

SRR

Dimensionless numbers

Fo Fourier number

Fr Froude number
Ma Marangoni number
Re Reynolds number
Sc Schmidt number

We Weber number
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1 Introduction

The clamour for energy-saving techniques in almost all branches of industry has acted as
a spur in the development of thermal separation equipment. The design and process engi-
neering improvements that have ensued entail that feedstocks are subjected to less severe
treatment and can thus be optimally exploited. They also entail production under ecologi-
cally favourable conditions (cf. Fig. 1.1).

A typical example is provided by low-pressure-drop packing in the vacuum rectification of
mixtures that are unstable to heat and that necessitate a large number of theoretical stages
for their thermal separation. The attendant decrease in the total pressure drop and operation
under vacuum ensure that the temperature at the bottom of the column is comparatively
low. Hence, decomposition products that are detrimental to the environment can be largely
avoided, i.e. atmospheric pollution is reduced and less residues have to be disposed of.
Another advantage is that the reduction in the average column pressure brought about by
vacuum operation increases the average relative volatility of the components in the mixture
and thus reduces energy consumption.

Low-pressure-drop, high-performance packing is an essential requirement in the economic
design of an integrated separation plant, because it permits heat pumps to be installed and a
number of columns to be linked together.

Energy
consump-
tion

Sepa-
ration
techniques

Influence

- )

Fig. 1.1. Relationships established by separation techniques between energy consumption, proces-
sing and environmental protection



