Covers Windows for Work Groups

Network Programming

in Windows NT ™

Alok K. Sinha

- Microsoft Corporation

1B IRIE S

A
vy

ADDISON-WESLEY PUBLISHING COMPANY

Reading, Massachusetts ® Menlo Park, California ® New York
Don Mills, Ontario ® Wokingham, England ® Amsterdam ® Bonn
Sydney ® Singapore ® Tokyo * Madrid ® San Juan * Milan ® Paris

This book is in the Addison-Wesley UNIX and Open Systems Series.
Series Editors: Marshall Kirk McKusick and John $. Quarterman

Senior Acquisitions Editor: Thomas E. Stone
Associate Editor: Deborah Lafferty

Savannah Consultants Editor: Bonnie Mae Savage
Production Supervisor: Nancy H. Fenron

Cover Designer: Barbara Atkinson

Production: Editorial Services of New England
Project Martager: Bonnie Jo Collins

Text Designers: Pat Nieshoff/Nieshoff Designi, Mark Heffernan
Text Figures: George Nichols

Copy Edirors: Sandra Sizer Moore, Beverly Miller
Senior Manufacturing Manager: Roy Logan

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and
Addison-Wesley was aware of a trademark claim, the designations have been printed
in initial caps or all caps.

The programs and applications presented in this book have been included tor their in-
structional value. They have been tested with care, but they are not guaranteed for any
particular purpose. The publisher does not offer any warranties or representations, nor
does it accept any liabilities with respect to the programs or applications.

Figures 2-1, 2-2, 2-3, 2-4, 2-6 and 2-7 in Chapter 2 are from H. Custer, Inside Windows
NT™ © 1993. Microsoft Press, Redmond;, WA. Reprinted with permission.

Access the latest information about Addison-Wesley books from our Internet gopher
site or visit our World Wide Web page:

gopher aw.com

http://www.aw.com/cseng/

Library of Congress Cataloging-in-Publication Data
Sinha, Alok.
Netwotk programming in Windows NT / Alok Sinha.
p. cm.)
Includes bibliographical references and index.
ISBN 0-201-59056-5
L. Microsoft Windows NT. 2. Computer networks. L. Title.
QAT76.76.0635567 1996
005.2—dc20 95-31136
CcIp

Copyright © 1996 by Addison-Wesley Publishing Company

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
systemn, or transmitted, in any form or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior written permission of the publisher.

Printed in the United States of America

123456789 10—MA—99 9897 96 95

Dedication

To Bonnie Mae Savage

Preface

was not always interested in networking, or computer science for that

matter. In fact, I received a master of science degree in mining engineer-

ing from University of Alaska, Fairbanks. After graduating, 1 was looking
for something interesting to do while my would-be wife completed her gradu-
ate degree in civil engineering, so I signed up to get a graduate degree in com-
puter science. The first yeat’s courses were full of complexity theory and
algorithms, both of which I enjoyed but they didn’t thrill me. In the second
year, [took the Networking Architecture class from an unorthodox professor,
Dr. Peter Knoke, who had recently come to academia after decades of industry
work. Instead of following the prescribed book, he narrated the latest technol-
ogy developments straight out of trade magazines and newspapers (the Wall
Street Journal was his favorite). Our individual projects involved research in
the latest areas of networking, surnmarized in in-depth presentations. I picked
local area networks as my topic and scoured all the trade magazines for infor-
mation. When I hit an unknown term, such as “router,” [would pore over the
books and research papets to understand the technology and architecture. By
the end of the semester, I had a broad knowledge not only of the theory of
networking but also of the latest technology. Needless to add, I was hooked
on networking and have spent most of my professional career in and around
networking-—from Microsoft LAN Manager to Directory Service to interac-
tive TV applications. Most important, however, Dr. Knoke succeeded in
showing his students how to learn on their own in a rapidly changing indus-
try—a vital skill for surviving in the computer industry.

The Audience

This book is targeted toward software developers and project managers who
want to learn about using the interprocess communication (IPC) mechanisms
offered by Windows and Windows NT for creating client/server applications.
Actually, students will also find this book useful in developing a new genera-
tion of networking applications in their laboratories. | assume that the reader is
familiar with Microsoft Windows and Windows NT programming, has working
knowledge of C programming, and understands the basics of networking.

PREFACE ' X

The first three chapters of the book present the background for network
programming in Windows and Windows NT environments. These chapters
discuss the networking architecture of Windows for Workgroups™ and
Windows NT as well as certain advanced programming features such as
Win32 services. The other six chapters explain the concepts and use of these
IPC mechanisms in Windows and Window NT environments: Remote
Procedure Call (RPC), Windows Sockets, Named Pipe, Mailslot, Network
Basic Input/Output Specification (NetBIOS), Internet Packet Exchange ™/
Sequenced Packet Exchange™ (IPX/SPX).

Within Chapters 4 through 9, I first present the basic concepts and a
primary-use model of an IPC mechanism in the Windows NT environment
and then proceed to convey the details of using the given IPC mechanism by
explaining the necessary system calls, showing sample programs illustrating
programming details, and unfolding intricate details wherever pertinent.
then present any special programming details necessary to use the IPC mecha-
nism from an application in the Windows environment.

Network programming is like any other discipline of computer science
wherein one optimizes every line of code, tweaks every algorithm, to maxi-
mize efficiency and performance. But it differs from other disciplines in that a
significant amount of effort needs to be spent on anticipating the inevirable
network and software failures. Such upfront concern and understanding allow
you to build software so robust that your applications continue to function de-
spite such failures.

Acknowledgments

This book takes its current form due to the constructive critiques of Bonnie
Mae Savage, the local editor and program manager at Savannah in Redmond,
Washington, who shaped the focus and the content of the book. Also forma-
tive were the constructive critiques of the reviewers and rhe editorial talents
at Editorial Services of New England. Together, they have all molded a raw
technical blurh into a coherent, extremely readable, and I hope a downright
enjoyable networking book. I thank their persistence, patience, tenacity, and
every other human virtue 1 forgot to mention! In addition, I must thank Tom
Stone at Addison-Wesley for accepting my half-page e-mail as the table of
contents for almost half a year! I also thank all individuals who have directly
and indirectly helped this book: Deborah Lafferty from Addison-Wesley for
her patience and good counsel; Roger Soles from Oracle Corporation; and
James “]” Allard, Manny Weiser, David Treadwell, Ryszard Kott, Margaret
Johnson, and Jim Allchin from Microsoft Corporation.

Alok Sinha
August 1995

Preface

Contents

Acknowledgments

One: Introduction

1.1 Historical Perspective

1.2 Impact of Windows NT Design on Users.

1.3 Impact of Windows NT Design on Developers

1.4 Client/Server Computing with Windows and Windows NT
Communication Methods in Windows and Windows NT

1.4.1

1.5 Summary

Two: Understanding Windows NT Architecture
2.1 Salient Windows NT Architecture Features

2.1.1
2.1.2

Windows NT Executive
Windows NT Protected Subsystems

2.2 Networking in Windows NT

2.2.1
222
2.2.3
224
2.25
2.2.6
2.2.7
2.28

Windows NT Networking Components
Accessing Network Resources

Accessing Network Resources from Applications
Multiple Network Providers

Windows NT Server and Domain Controller
Access Control and Network Security
Interprocess Communication in Windows NT

Networking Within VDM and Windows on Win32

2.3 Salient Win32 Programming Features

2.3.1
2.3.2
233
234
235
2.3.6
2.3.7

Error Handling in Windows NT

Structured Exception Handling

Threads

Interprocess and Intraprocess Synchronization
Ovetlapped [JO

Memory-Mapped File I/ and Sharing Memory
Control C Handlers

2.4 Creating an Echo Server
2.5 Summary

ix

=

— G0 O\ UL

21
21
23
24
27
27
30
31
32
34
37
40
42
42
43
44
46
51
64
72
79
81
97

CONTENTS ’ vi

Three: Understanding Windows Architecture

3.1 Windows Operating Modes

3.2 Networks in Windows for Workgroups
3.2.1 Enhanced-Mode Windows for Workgroups
3.22 Standard-Mode Windows for Workgroups
33.3 Accessing Network Resources

3.3 Summary

Four: RPC Programming in Windows NT
4.1 Historical Petspective
4.2 Microsoft RPC Concepts
4.3 Writing a Simple RPC-Based Client and Server
4.4 Designing an Efficient RPC Client and Server
44.1 Base Types
442 Arrays
4,43 Strings
444 Structures
445 Pointers
4.4.6 Nested Arrays
4.4.7 Unions
4.4.8 Using transmit_as
4.5 Designing Communication Infrastructure

451 Mechanics of Connecting Client and Server

45.2 Using Name Service
453 About Binding Handles
4.6 Using Callback Routines
4.7 RPC Management
4.8 RPC Error and Exception Handling
4.9 Secure RPC
4.10 Echo Server—RPC-Based Win32 Server
4.11 RPC Programming in Windows
4.12 Summary

Five: Windows Sockets in Windows NT

5.1 Introduction to Sockets Programming
5.1.1 Creating a Socket

5.1.2 Associating Address with a Socket or Binding

5.1.3 Server Accepting Calls
5.14 Client Connecting to Server

5.1.5 Address Resolution in TCP/IP Environment
5.1.6 Sending and Receiving Data on Stream Socket
5.1.7 Sending and Receiving Data on SOCK_DGRAM Socket

5.1.8 Terminating a Connection
5.1.9 Asynchronous Operations
5.1.10 Out-of-Band Data Processing

99
100
105
106
109
109
114

115
116
118
121
124
126
127
129
131
132
137
137
139
141
145
160
170
178
182
184
188
191
196
198

199
201
203
206
219
224
219
232
238
246
247
254

5.2 Windows Sockets Extensions
5.2.1 Startup and Cleanup Functions
5.2.2 Error-Handling Functions
5.2.3 Functions for Handling Blocked Sockets
5.2.4 Asynchronous Database Functions
5.2.5 Asynchronous Select
5.3 Interoperability with IPX/SPX-Based Applications
5.4 Name Service Provider APls
5.5 A Windows-Socket-Based Win32 Service
5.6 Guidelines for 16-bit Windows Sockets Apphcatlom
5.7 Summary

Six: Pipes in Windows NT
6.1 Named Pipes in Windows NT
6.1.1 Platforms Supported
. 6.1.2 Simple Named Pipe Client and Server
6.1.3- Creating a Named Pipe
6.14 Accepting Incoming Open Requests from Clients
6.1.5 Opening a Pipe
6.1.6 Reading/Writing Named Pipe
6.1.7 “Peeking” into a Named Pipe
6.1.8 Transaction-Oriented Client/Server Applications
6.1.9 Dynamically Getting and Setting Pipe Mode
6.1.10 Using Information Available on Named Pipe
6.1.11 Using Events and Overlapped I/O
6.1.12 Using Asynchronous Pipes
6.1.13 Multiple Instance Management
6.1.14 Security Considerations with Named Pipes
6.2 Anonymous Pipes
6.2.1 Creating an Anonymous Pipe
6.2.2 Reading/Writing Anonymous Pipe
6.3 Win32 Service Using Named Pipes
6.4 Named Pipes in Windows
6.5 Comparison with UNIX Pipes
6.6 Summary

Seven: Using Mailslot in Windows NT
7.1 Architecture of Mailslot
7.2 Programming Mailslot

7.2.1 Creating a Mailslot Server

7.2.2 Creating a Mailslot Client

7.2.3 Efficient Use of Mailslot
7.3 A Win32 Service Using Mailslot
7.4 Mailslots in Windows for Workgroups
7.5 Summary

255
256
259
260
262
267
277
280
282
298
299

301
301
303
305
306
309
317
322
328
333
344
346
347
356
357
364
366
367
368
373
385
389
390

393
365
397
397
401
405
408
423
424

vii

|

CONTENTS

viii

|

CONTENTS

Eight: NetBIOS Programming in Windows NT
8.1 OQverview of NetBIOS Programming

8.2
8.3

8.4
8.5
8.6

8.1.1

Elements of an NCB

NetBIOS Support in Windows NT
NetBIOS Programming in Windows NT

8.3.1
83.2
8.3.3
834
835
8.3.6

Setting the NetBIOS Application Environment
Name Management Services

Exploiting Session Service

Designing Programs Using Asynchronous Commands
Handling Multiple Clients and Large Data Transfers
Communication Using Datagram Services

A NetBIOS-Based Win32 Service
NetBIOS Programming in Windows
Summary

Nine: SPX/IPX Programming in Windows NT
9,1 An Overview of Novell NetWare
9.2 NetWare Services

9.3

9.4

IPX Programming

9.3.1 IPX Programming APls

9.3,2 Dara Structures Relevant to IPX Programming
93.3 Asynchronous Processing of ECBs

9.3.4 Initializing and Deinitializing an IPX Application
9.3.5 Opening and Closing [PX Sockets

93.6 Receiving IPX Packets

9.3.7 Locating a Specific Server Receiving IPX Packets
9.3.8 Sending Datagram Packets

939 IPX Sample Program

SPX Programming

9.4.1 Data Structures and Asynchronous Processing
9.4.2 Initializing SPX Applicarions

9.4.3 Opening and Closing SPX Sockets

9.4.4 Listen For Connections

9.4,5 Establishing a Connection

9.4.6 Breaking a Connecrion

9.4.7 Send and Receive Data

9.4.8 SPX Sample Program

9.5 Summary

Appendix A: Determining NetBIOS System Characteristics
Appendix B: Multicasting with Windows Sockets

Bibliography
Index

425
425
431
435
437
437
440
449
462
480
487
496
507
510

511
512
515
517
518
520
524
528
529
531
532
536
538
554
557
559
560
560
563
564
565
567
582

583
593

603
605

Chapter One

INTRODUCTION

icrosoft® Windows™ operating system is the predominant personal

computer (PC) operating system, and one of the most popular

desktop environments in use today. Windows users can run their
productivity tools, such as word processors and spreadsheets, in a consistent,
simple graphical user environment. However, the original Windows system
can only be used on PCs containing Intel® x86-based processors. Further,
Windows is not suitable for computing-intensive applications, such as
computer-aided design (CAD) applications, nor is it robust enough to handle
“mission-critical” applications such as accounting and payroll. Although such
applications are not appropriate for the original Windows operating system,
they can be hosted on the Microsoft Windows NT™ operating system.

Whether they are running the Windows or Windows NT desktop operat-
ing system, networked users need to access file servers to store information
and print servers to print documents. To do either of these tasks, most users
connect their PCs to a local area network (LAN). Today's LAN-hased file
servers and print servers provide access to information storage and printers,
and also to many other networked resources. There is a growing demand for
desktop access to such new services as database servers, client/server comput-
ing, and the Internet. For these reasons, software developers are now focusing
on a new breed of applications. In this next level of computing, applications
running on the desktop interact with other applications that might reside on
one or more remote machines. This defines network computing, in which ap-
plications on one machine communicate with their counterparts on a remote
machine using an interprocess communication (IPC) method.

This book, Network Programming in Windows NT, introduces software de-
velopers, network administrators, and others to the methods of building
client/server systems on Windows and Windews NT IPC interfaces. It also
provides insights into the network architectures of Windows and Windows
NT. By understanding the basic architectures of these environments and by
following the explanations of the IPC mechanisms, you should be able to de-
sign and implement efficient Windows and Windows NT applications that
can harness the power of network computing.

2

CHAPTER ONE

Network Programming is intended primarily for people in the software
development community who are (or who plan to be} designing client/server
software for Windows and Windows NT environments: software developers
writing new applications for Windows and Windows NT environments; engi-
neers porting applications from UNIX® and OS/2™ environments to the
Windows NT environment; project managers involved in developing
Windows and Windows NT-based applications; software consultants; and stu-
dents who are using Windows and Windows NT environments to learn the
principles of networking. To benefit the most from this book, you should be
familiar with Windows and Windows NT programming, have a working
knowledge of the C programming language, and a basic understanding of net-
working. Some advanced sections of the book may be easier to grasp if you are
familiar with the concepts of object-oriented programming. All sample pro-
grams are written in C and have been compiled in Microsoft Visual C™ 2.0
environment for Windows and Windows NT. All sample programs can be
downloaded from £tp://ftp.aw.com/cseng/sinha/windowsnt via
anonymous file transfer protocol (FIP) on the Internet.

The book is organized to help you understand each [PC mechanism quickly.
The first three chapters present the background for network programming in
Windows and Windows NT environments, They cover the networking archi-
tecture of Windows for Workgroups™ (WFW) and Windows NT and cet-
tain advanced programming features. Readers already familiar wich these
concepts may want to skip these chapters or use them as a reference.
However, the remaining chapters assume the knowledge of these materials.

Chapters 4 through 10 explain the concepts and use of IPC mechanisms
in Windows and Windows NT environments: remote procedure call (RPC),
Windows Sockets, Named Pipe, Mailslot, Network Basic Input/Qutput
Specification (NetBIOS), and Internet Packet Exchange™/Sequenced
Packet Exchange™ (IPX/SPX). Each chapter begins with the basic concepts
and a primary-use model of the IPC mechanism in the Windows NT environ-
ment. It examines the details of using the IPC mechanism, explains the nec-
essary system calls, shows sample programs illustrating programming detaiis,
and unfolds intricate details wherever pertinent, It presents any special pro-
gramming details necessary for using the mechanism in an application in the
Windows environment and ends with a summary of the IPC mechanism’s
highlights.

Each chapter discusses issues that can affect the reliability or the perfor-
mance! of an application when you use a feature, and suggests ways you can im-
prove reliability and performance. Whenever pertinent, | present comparisons

1. Performance of a network-aware application is often measured in terms of a number of
matrices, such as the time delay involved in network I/O, the resource overhead per
user, the total data throughput per second, and so on.

among features of the different IPC mechanisms, but [do not compare the
performance of one [PC mechanism with another in Windows or Windows
NT environments. (Given the wide range of possible test scenarios, perfor-
mance matrices, and software upgrade packages for Windows and Windows
NT, performance comparisons between one IPC with another are outside the
scope of this hook.) I also briefly address Windows NT security concepts,
which can be used to design secure software systems; security is an important
consideration in any network-aware software system.

Throughout this book, the term “communication methods” refers to IPC
over a network by some physical medium such as Ethernet. (For the purposes
here, other communication methods, such as serial communication by com-
munications (COM) ports and modems, are irrelevant.) Whenever specific
differentiation is not necessary, the versions of MS-DOS-hased Windows
(Windows 3.0,™ Windows 3.1™ Windows 3.11)" and Windows for
Workgroups 3.117™ etc.) are referred to as Windows. Similarly, unless explicit-
ly stated otherwise, Windows NT refers to all versions on Windows NT plat-
forms (Windows NT 3.1, Windows NT 3.5 Workstation, Windows NT 3.5
Advanced Server, and so on). The evolution of the Windows and Windows
NT operating systems is illustrated in Figure 1-1. Finally, the term Windows
NT Workstation is used except when the distinction between Windows NT
Workstation and Windows N'T Advanced Server (NTAS) products is im-
portant for the discussion at hand.

A MS-DOS-based Windows (Windows 3.x)

Windows 95 (1995) /

Windows for Workgroups 3.11 (1992)

Windows NT

7

_ "Cairo" (1997)

Windows 3.1 (1990)

Windows 3.0 (1989)

Version

1989 ‘ 1995

>

Time

Figure 1-1. Ewvolution of Microsoft Windows and Windows NT Operating Systems

INTRODUCTION ‘ 3

4

CHAPTER ONE

1.1 HISTORICAL PERSPECTIVE

The arrival of the Windows 3.0 operating system in 1989 caused a major shift
in the way people used IBM®-PC compatibles, a shift no less important than
the introduction of the PC in the early 1980s. Before the widespread use of
Windows, PCs were operated by a simple Microsoft disk operating system
(MS-DOS®), consisting of a command shell with a series of nonintuitive
commands and utiliries. Most users found MS-DOS unwieldy and nonfriend-
ly. Furthermore, the MS-DOS environment did not specify any user interface
guidelines. Thus, each MS-DOSbased application had its own user interface,
which usually bore little resemblance to other applications. Today, most soft-
ware houses and independent software vendors (ISVs) are delivering their
second or third generation of Windows-based applications. As you walk down
the aisles of your neighborhood stores, you can easily spot rows of computers
running Windows. What promoted such popular acceptance of Windows 3.0
was its simple, user-friendly graphical user interface (GUI) and consistent
use of Windows application programming interfaces (APlIs).

The Windows operating system simplified and standardized the look and
feel of all Windows-based applications. Although it was nor always stable, the
Windows 3.0 operating environment was complete enough that users did not
have to face the MS-DOS prompt ever again—unless they wanted to.
Windows, in establishing a consistent look and feel for application GUI and
by standardizing APIs, made it possible for users to adapt quickly to Windows-
based programs. This shift should not surprise anyone, given the success of
Apple Macintosh® (starting in 1984) and the proven work on user interfaces
done at Xerox® Labs by Alan Kay and his group. GUIs just took time to arrive
in the PC market because of the sheer lack of standards, the shortage of so-
phisticated software and hardware, and the inability of the major players to
forge agreements.

Another reason for the success of Windows has been the immense number
of application programming interfaces developed for it, about 700 in Windows
3.0 and about 1,100 in Windows 3.1. These standardized interfaces have al-
lowed the applications to use common ways to access resources and system
services. They have also reduced the time needed to develop applications.

Windows does have some limitations as an operating system. It is based on
MS-DOS and allows only nonpreemptive multitasking. Thus, an errant appli-
cation can refuse to relinquish control of the central processing unit (CPU)
while starving other applications of computing cycles. This problem has been
resolved in newer versions of Windows (Windows 95) as well as in Windows
NT. Another issue was that networking capabilities were not tightly integrat-
ed within Windows 3.0. To solve networking woes with Windows, Microsoft
offered Windows for Workgroups 3.11 in 1992. This package not only made
networking easier, bur it also allowed peer-to-peer communication, file shar-
ing and printing, and mail among members of a workgroup.

In 1985, nearly parallel to the Windows evolution, Microsoft and IBM
began developing a true multitasking operating system with a GUI and based
on a new architecture, not MS-DOS. This work led to early versions of IBM
08/2.™ IBM’s version did not attract a major following for many reasons. In
1989, rather than fixing OS/2, Microsoft started designing a new operating
system. The new system is known today as Windows NT.2 This multitasking
operating system is designed to:

s Port to varying hardware, including the reduced instruction set
computing (RISC) processors

» Scale to multiple processor systems

¢ Integrate with nerworking, thus allowing client/server computing
capability

* Be POSIX3 complianit

e Meet C24 government security certification

While Windows NT has a completely new architecture, its designers
made some major decisions that empower users and application devel-
opers alike. First, Windows NT has the same user interface as that of
MS-DOS-based Windows. Second, most existihg Windows and MS-DOS
applications can be executed on Windows NT regardless of the underlying
hardware. For example, MS-DOS applications can run in Windows NT on a
MIPS® RISC machine. In short, Windows NT is largely backward compatible.

Thus, Microsoft has provided two operating systems that incorporate
similar user and application programming interfaces. Because Windows NT
has been designed to be the state-of-the-art operating system that is also
hackward-compatible with MS-DOS-based Windows, users can run Windows
on computers with limited resoutces, and they can use Windows NT on high-
end computers as shown in Figure 1-2.

1.2 IMPACT OF WINDOWS NT DESIGN ON USERS

The Windows NT operating system, much like the UNIX operating system,
can run on diverse hardware platforms. The user interface temains the same
across all Windows systems; users can move easily from one system to another,
and quickly learn and adapt to new applications. While businesses use
Windows operating systems for running productivity applications, such as
word processors and spreadsheet applications, the scientists, engineers, and

2. See Helen Custer’s book Inside Windows NT for insight into the design of the NT
operating system.

3. POSIX is the portable operating system interface based on UNIX, as defined fy IEEE
standard 1003.1-1988.

4. See Department of Defense Trusted Computer System Evaluation Criteria, DOD
5200.28-8STD, for details.

IMPACT OF WINDOWS NT ON USERS ‘ 5

6

CHAPTER ONE

Windows NT

Windows NT

- 'ﬁ;eron

1 multiprocessor system

Windows 95 or

Versions Windows 3.x 7;% Az
- High-end workstation

WinPad

Palmtop

Y

Resource (Memory + Hard Disk)
Figure 1-2. Windows and Window NT on Different Types of Hardware

power users use Windows NT for their computing-intensive applications, such
as teal-time process control, stock-market financing and forecasting, and im-
portant applications such as file servers and database servers.

1.3 IMPACT OF WINDOWS NT DESIGN
ON DEVELOPERS

Windows NT can run a multicude of applicarions, each of which depends on
different interfaces—Winl6 API, Win32 API, OS/2 API, MS-DOS API,
POSIX API, and Windows NT APIL This flexibility is illustrated in Figure 1-3.

Winl6 Application Programming Interfaces: These interfaces ensure all
Windows applications written to 16-bit Windows APIs can be executed on
Windows NT. (Nothing undermines the success of an operating system more
than not having good applications for it, so this is a big boost to Windows
NT.) This is especially important for the ISVs who currently produce
Windows applications, because they can continue to meet their customer
needs even if the customers move to the Windows NT platform. Chapter 2,
“Understanding Windows NT Architecture,” explains in detail the mecha-
nism by which the Winl16 inrerfaces are supported on Windows NT.

Win32 Application Programming Interfaces: Windows NT is a 32-bit operat-
ing system. To take full advantage of its power, Windows NT exports 32-bit
versions of Winlé interfaces. (Of course, an application written to Win32
APIs will perform better than their Winl6 counterparts.) At run time, a
process called “thunking” maps Winl6 API calls to Win32 calls. To make it

Win16 APls

MS-DOS APls
MS-DOS VDM
Win32 APlIs 0S/2 API POSIX API
]
Win32 0s/2 POSIX
subsystem subsystem subsysiem
]
Windows NT APis
L Windows NT subsystem J

Windows NT Kernel and Drivers

Figure 1-3. Windows NT Programming Interfaces

easy to gradually port Winl16 applications to a Win32 environment, the argu-
ments and return types of Win32 interfaces are designed to be almost idenri-
cal to those of the Winl6 interfaces, although most arguments and return
types are 32-bit quantities in the Win32 environment. It is therefore possible
to create a Win32 application from a Winl6 application by recompiling the
source, provided the original application is a well-written, “well-behaved”
Winl6 application. In practice, some changes might he necessary, but they
will be minimal.

Win32 interfaces also provide advanced operating system features, such
as semaphores, events, and threads. Hence, it is prudent to implement en-
hancements in the application so it uses the advanced features given by
Win32 APIs. Chapter 2, “Understanding Windows NT Architecture,” has
more details.

MS-DOS Application Programming Interfaces: Windows NT supports most
MS-DOS calls (for example, INT 21h), so most of the popular MS-DOS ap-
plications can be run on Windows NT. Some MS.DOS interfaces ate not al-
lowed in Windows N'T.5 These include the intetfaces that allow applications
to directly interact with the hardware, such as the video or the hard disk.

OS/2 Application Programming Interfaces: Windows NT supports most OS/Z
APIs, including console-based 1/O (inputfoutput) APIs. Currently, it does
not support Presentation ManagerTM (PM) interfaces, but Microsoft expects
to make PM subsystems available in the near future,6

5. See [MS 93a] for details.
6. See [MS 93a] for details on the OS/2 APls supported by Windows NT.

DEVELOPERS

O N

NT

IMPACT OF WINDOWS

