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Preface

Systems biology is an exciting new field bringing together life scientists, mathe-
maticians, computer scientists and engineers to explore a new and deeper under-
standing of biological systems. Computational models and methods of analysis
are essential components of the systems biology programme, not only reflecting,
but also driving wet lab experimentation and the formation of new hypotheses
about system behaviour.

This volume contains the proceedings of the fifth meeting of the international
conference on Computational Methods in Systems Biology. The first conference
was in Trento, Italy in 2003. The second meeting was in Paris in 2004, and in
2005 the conference came to Edinburgh for the first time. Last year’s meeting
was again in Trento and this year the conference was again in Edinburgh.

This year the conference attracted over 60 paper submissions. Sixteen of
these were selected for presentation at the conference. In choosing the 16 best
papers, the conference Chairs received wonderful support from the Programme
Committee, who delivered thorough and insightful reviews of all papers in a very
short time scale. We thank all of the members of the Programme Committee
and their sub-referees for their industriousness. We also thank the authors for
responding swiftly to the comments of the referees and revising their papers to
address these comments earnestly.

The electronic submission of papers, refereeing and Programme Committee
work were made possible by the excellent EasyChair free conference management
system. EasyChair managed all of the aspects of the review process from submis-
sion to review and discussion, through to sending decisions by e-mail to authors.
EasyChair compiled the list of referees which appears in this front matter. We
give hearty thanks to Andrei Voronkov for providing this wonderful service to
the scientific community.

The conference received financial support this year from the e-Science In-
stitute, the Centre for Systems Biology in Edinburgh, and Microsoft Research,
Cambridge. In addition, the Engineering and Physical Sciences Research Coun-
cil supported the conference and contributed to the student bursaries, which
we distributed to PhD students to allow them to attend the conference free of
charge.

The conference this year was held in the e-Science Institute, Edinburgh. Lee
Callaghan and the administrative team at the e-Science Institute provided ex-
cellent support for all of the organisational aspects of the conference, allowing us
to concentrate on the technical aspects. We received additional support from the
administrative staff in our respective departments, assisting with the preparation
of this volume, and planning the associated opening reception and conference
dinner.



VI Preface

We were very fortunate this year to have two outstanding invited speakers in
Daniel T. Gillespie and Mark Girolami.

July 2007 Muffy Calder
Stephen Gilmore
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Chemical Master Equation and Langevin
Regimes for a Gene Transcription Model

Raya Khanin! and Desmond J. Higham?

! University of Glasgow, Glasgow, G12 8QQ , UK
2 University of Strathclyde, Glasgow, G1 1XH, UK

Abstract. Gene transcription models must take account of intrinsic
stochasticity. The Chemical Master Equation framework is based on
modelling assumptions that are highly appropriate for this context, and
the Stochastic Simulation Algorithm (also known as Gillespie’s algo-
rithm) allows for practical simulations to be performed. However, for
large networks and/or fast reactions, such computations can be prohibi-
tatively expensive. The Chemical Langevin regime replaces the massive
ordinary differential equation system with a small stochastic differential
equation system that is more amenable to computation. Although the
transition from Chemical Master Equation to Chemical Langevin Equa-
tion can be heuristically justified, there is very little guidance available
about how closely the two models match. Here, we consider a transcrip-
tion model from the recent literature and show that it is possible to com-
pare first and second moments in the two stochastic settings. To analyse
the Chemical Master Equation we use some recent work of Gadgil, Lee
and Othmer, and to analyse the Chemical Langevin Equation we use Ito’s
Lemma. We find that there is a perfect match—both modelling regimes
give the same means, variances and correlations for all components in
the system. The model that we analyse involves ‘unimolecular reactions’,
and we finish with some numerical simulations involving dimerization to
show that the means and variances in the two regimes can also be close
when more general ‘bimolecular reactions’ are involved.

1 Background

Several experimental techniques are now available to measure gene expression,
even at the single cell level [1,2,3]. In parallel, mathematical models and simu-
lation algorithms have been developed to explain these observations and make
new predictions [4,5,6,7,8,9,10]. Key modeling and simulation challenges in this
area are that (a) some components may be present in relatively small quantities,
(b) there can be a wide range of natural time scales in operation, and (c) on
the level at which observations are made, the process is inherently stochastic.
A Markov process, or Chemical Master Equation (CME) framework is highly
appropriate in this context, and is now widely used. The CME methodology and
an accompanying simulation algorithm can be traced back to the work of Gille-
spie in the chemical kinetics literature [11,12]. Recent overviews can be found

M. Calder and S. Gilmore (Eds.): CMSB 2007, LNBI 4695, pp. 1-14, 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 R. Khanin and D.J. Higham

in [6,13,14] and we note that there are close connections to Petri nets, discrete
event simulation and birth-and-death processes [15].

Because the CME framework takes account of every reaction, for many re-
alistic models it is too computationally expensive to be useful. The Chemical
Langevin Equation (CLE) provides an alternative model that retains some of
the main features of the CME whilst making simulations more feasible. The
CLE, which takes the form of an Ito stochastic differential equation (SDE),
can be derived from the CME via a series of reasonable modeling assumptions
[16], and under the extreme case where fluctuations in the CLE are ignored, we
recover the traditional deterministic Reaction Rate Equation (or Law of Mass
Action). Many authors are now developing multi-scale simulation methods that
automatically operate in the cheapest modeling regime that captures the appro-
priate behaviour [17,18]. For this reason it is important to have an understanding
of how the different modelling regimes compare. This motivates the work here,
where the means and variances of the CME and CLE are compared for a recent
gene transcription model. To analyse the CME we make use of the general first-
order reaction theory of Gadgil et al. [19] and to analyse the CLE we perform
what appears to be the first application of Ito’s lemma in this context.

The article is organised as follows. In the next section we give a very simple
example that illustrates the main concepts involved in our work. Then in sec-
tion 3 we set up the general specification of the CME and CLE and introduce
Ito’s lemma. The gene regulation model is described in section 4 and moments
for the CME and CLE are derived analytically in sections 5 and 6 respectively.
A numerical experiment involving dimerization is given in section 7 to show that
similar behaviour can also arise when we leave the first-order realm.

2 Illustrative Example: Unimolecular Decay

To illustrate the ideas in this work, we begin with the simplest possible type
of reaction; unimolecular decay. We suppose that there is only one species, 5,
in our system, and the only event that can take place at any time is that one
molecule of S may decay. We could write the system symbolically as

S50 (1)

Here, ¢ > 0 is a constant that relates to the propensity of the decay process.

We suppose that initially, at time ¢ = 0, the number of molecules of S is known
to be N. The state of the system at time ¢ is fully described by a non-negative
integer X (¢), representing the number of molecules of S present. So X (t) may
take any of the values NN — 1, N —2,...,1,0. In the CME setting we regard
X (t) as a discrete-valued random variable at each point in time, and work in
terms of the probability p;(¢t) that X (t) = 4, arriving at the ordinary differential
equation (ODE) system

Spn(t) = —eNpw (), )

d
Epi(t) =c-(i+1) - pix1(t) —c-i-pi(t), fori=N-1,N—-2,...,0. (3)
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The general ODE (3) has a natural interpretation. The rate of change of p;(#)
has a positive contribution c- (i + 1) - p;+1(¢), which corresponds to the fact that
we arrive at state ¢ via one decay from state i + 1. Conversely, there is a negative
contribution —c-i-p;(t) due to the fact that, when in state 7, we leave that state
when a decay takes place.

The system (2)—(3) is readily solved to give

! . s
pi(t :Le*”t 1—e-t)V , fori=0,1,2,...,N. 4
(N —9)!

Using E[-] and Var[-] to denote the mean and variance, respectively, it follows
that
E[X(t)] = Ne™® and Var[X(t)] = Ne (1 —e ). (5)

Details can be found, for example, in [20] by observing that this system corre-
sponds to a pure death process in the context of stochastic population modelling.
In the CLE setting, we represent the amount of species S present at time ¢
by the real-valued stochastic process Y (). In other words, at each time ¢, Y (¢)
is a continuous-valued random variable. The CLE is then the Ito SDE [21,22]

dY (t) = —cY (t) dt — \/cY (8) dW (), Y(0) = N. (6)

Because the drift coefficient —cY'(t) is linear, it follows immediately that E [Y (¢)]
satisfies the ODE that arises when the noise is switched off, giving

E[Y(t)] = Ne ¢ (7)

To find the second moment, we may apply Ito’s lemma, as described in sec-
tion 3.2, to get

%IE [Y(t)?] = —2cE[Y(t)?] + cE[Y(2)].

Using the expression (7), this solves to give E [Y(t)?] = Ne~“, so that
Var[Y(t)] = Ne™® (1 — =) (8)

Comparing (7) and (8) with (5), we see that the models give precisely the
same expressions for the mean and variance of S. This happens despite the fact
that one uses the discrete, integer-valued state vector X () and the other uses
the real-valued Y (¢).

For completeness, we mention that the law of mass action, or reaction rate equa-
tion, formulation for the system (1) has the form of a scalar ODE dz(t)/dt =
—cz(t), where 2(t) is a deterministic real-valued quantity representing the amount
of S present at time ¢. This is precisely the ODE for the mean in the CLE, and
hence z(t) = E[Y (t)] = Ne~°t.
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Two features of the CLE (6) for this simple model are generic.

1 The diffusion coefficient is nonlinear.
2 The description of the problem involves a square root, and hence the problem
is only well defined if the solution remains non-negative.

With regard to the second point, the particular CLE (6) is a special case of
a square root process. These SDEs are widely used as interest rate models in
mathematical finance, and it can be shown that the solution in (6) maintains
non-negativity with probability one [22]. However, we note that the issue of
negative solutions seems to be open for general CLEs. In this work, we will
always assume that the CLE has a well-defined, unique solution.

The main result in this article is that the coincidence of CME and CLE mean
and variance in the simple model (1) carries through to a gene transcription model.

3 Stoichiometric Formalization

3.1 Chemical Master Equation

Suppose that there are N chemical species, S1,S2,...,SN taking part in M
different chemical reactions. In the CME formulation, we have a state vector
X(t) € RN whose ith component, X;(t), denotes the number of molecules of S;
present at time ¢. Hence, each X;(t) is a non-negative integer. For each 1 < j <
M we have a stoichiometric vector v; € RN, and propensity function a; (X(t)),
such that the jth reaction takes place over the infinitesimal interval [¢,¢ + dt)
with probability a; (X(t))dt and causes the change X(¢) — X(¢) + v; to the
state vector.

Letting P (x,t) denote the probability that X(¢) = x, the CME is the ODE
system

M
dP (x,1t) Z a] X — I/J)P(X Vj,t) — aj(x)P(x, ). (9)

Generally, the CME cannot be solved analytically in any useful way, although
Gillespie’s Stochastic Simulation Algorithm (SSA) [11,12] gives a way to compute
realisations of {¢,X(t)} that respect the CME. However, in the case where all
reactions are unimolecular (or first-order), detailed analysis is possible, both for
the first and second moments [19] and the general distributions [23]. In this
work we will show that, at least for a specific gene regulation model, useful
analytical results can also be derived for the CLE formulation described in the
next subsection.

3.2 Chemical Langevin Equation

The CLE uses a real-valued random variable Y (¢) € R¥ to describe the state
of the system at time ¢. The jth component Yj(t) represents the amount of
species j. In moving from the CME to the CLE we (typically) make a dramatic
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reduction in the number of components, but pay the price that each component
is a real-valued random variable, rather than a non-negative integer. The CLE
takes the form of an Ito SDE [21,22]

M M
dY(t) = v;a;(Y(t)dt + Z v/ a;(Y(t) dW;(t), (10)

where the {W; (t)} ", are independent Brownian motions.

As background for the SDE analysis in section 6, we now state the relevant
part of Ito’s lemma; see, for example, [22]. For the general Ito SDE system with
n components and d independent Brownian motions

Yi(t) = b; (Y(t)dt+z% ) dW;(t), 1<i<n, (11)
we let
a(Y(t) =0 (Y1) o (Y(t)T e R, (12)

Then for any function f : R™ — R that is twice continuously differentiable, Ito’s
lemma tells us that

£ V() = (Zaf L, (V1) + 4 S T TG (¥ (t))) @
+Zmart., (13)

where “mart.” denotes a martingale whose precise form is not relevant to our
work. We will use two particular cases of f. When f(Y) = Y}?, (13) becomes

d(Y?) = 2Yebr (Y(t)) + ark (Y (2))) dt + mart. (14)
and when f(Y) =Y,Y), for k # [, it becomes

d(YiY:) = (Yibe (Y () + iy (Y (£)) + Saxt (Y () + Sauw (Y(£)) dt + mart
15

4 Gene Regulation Model

We now consider a model of eukaryotic gene regulation, originally proposed in [24].
This model incorporates two states of promoters: an inactive state, D, not permis-
sive of transcription, and an active state D* that is competent for transcription.
Transition between the two states of promoter is reversible and the total num-
ber of promoters is conserved, i.e. D + D* = Dp. Transcription takes place from
the active state D* with the linear rate k,, resulting in production of messenger
RNA (mRNA) molecules that decay with rate ... Proteins P are translated from
mRNA molecules with linear rate k, and they decay with rate ~,.



