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Preface

The field of statistical signal processing embraces the many mathematical procedures
that engineers and statisticians use to draw inference from imperfect or incomplete
measurements. The major domains of the field are detection, estimation, and time
series analysis.

Abstractly, statistical signal processing is a theory for using experimental mea-
surements to transform a prior model for a signal into a posterior model that may
be used to make informed decisions. The quality of the decision is measured by a
loss function that depends on ground truth and the decision taken. It is the intricate
interplay between prior models, measurement schemes, loss functions, and decision
rules that gives statistical signal processing its great variety.

ORGANIZATION AND USE

This book is my personal statement about the fundamental ideas in statistical signal
processing. The book breaks down along four distinct topical lines: mathematical and
statistical preliminaries; detection theory; estimation theory; and time series analysis.
There is enough material to support a two-semester course in statistical signal process-
ing, but the book may be used for separate one-semester courses in detection theory,
estimation theory, or time series analysis. In a detection theory course, Chapters 1
through 5 may be covered in their entirety. In an estimation theory course, Chapters
1 through 3 and 6 through 8 may be covered. In a time series course, Chapters 1
through 3 and 9 through 11 are appropriate. Chapter 9 on least squares is a swing
chapter that may be treated as a topic in estimation theory or time series analysis.

A GUIDED TOUR OF THE BOOK

Mathematical and Statistical Preliminaries

I begin in Chapter 2 with a fairly comprehensive review of linear algebra, matrix the-
ory, and multivariate normal theory. Linear algebra, and the geometrical pictures that
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bring life to it, forms the basis for our prior structural information about a signal. Ma-
trix theory provides an algebra for manipulating and composing linear transformations,
and multivariate normal theory provides the statistical methodology for computing the
distribution of linear and quadratic forms in normal random vectors. When teaching
from this chapter, I pick and choose from the topics, making sure to develop the
ideas of linear independence, subspaces and their spans, orthogonal subspaces, QR
factorizations, projections, the singular value decomposition, the multivariate nor-
mal distribution, and the distribution of quadratic forms in projection operators. In
Chapter 3, I develop the main results in the theory of sufficient statistics and show
the fundamental role they play in the computation of minimum variance unbiased
estimators.

Detection Theory

Chapters 4 and 5 are dedicated to detection theory. In Chapter 4 I treat the many
faces of the Neyman-Pearson theory of hypothesis testing. I cover the rudiments of
decision theory, discuss the roles of sufficiency and invariance in hypothesis testing,
and develop the theory of uniformly most powerful tests. I then apply the principles
of sufficiency and invariance to signal detection when the signal model, or the noise
model, is incompletely known. This produces matched filters, CFAR matched filters,
matched subspace filters, and CFAR matched subspace filters. The final two sections of
Chapter 4 treat reduced-rank detectors and linear discriminant functions for detecting
Gaussian signals in Gaussian noise. Chapter 4 is long, so some instructors may wish
to omit the linear discriminant functions and, perhaps, the sections on matched sub-
space filtering, although the latter is very important in the modern study of detection
theory. In Chapter 5, I treat the Bayesian theory of hypothesis testing, wherein a prior
distribution is assigned to the hypotheses under test. Minimax tests are constructed
as Bayes tests against least favorable priors. The study of M-orthogonal symbolling
produces insights into channel capacity, and the study of composite matched filters
produces insights into associative memories.

Estimation Theory

Chapters 6 through 9 are devoted to estimation theory. I begin in Chapter 6 with
the maximum likelihood theory of parameter estimation, where I discuss the roles
that sufficiency and invariance play in the maximum likelihood theory and discuss
the Cramer-Rao bound for the variance of unbiased estimators. Nuisance parameters
are explored in depth. In the last several sections of the chapter, T apply maximum
likelihood theory to the identification of subspaces, to the identification of ARMA
parameters, and to the identification of structured covariance matrices. Chapter 6
is long, so some instructors may want to give nuisance parameters a once-over-
lightly, and select just a few of the applications. In Chapter 7 parameters are en-
dowed with prior distributions, and the Bayes theory is developed for turning prior
distributions into posterior distributions. The Bayes theory produces the Gauss-Markov
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theorem for multivariate normal parameters and measurements. I interpret the Gauss-
Markov theorem by showing how it transforms a channel model for measurements into
an inverse channel model, or estimator-plus-noise model. The Gauss-Markov theorem
is applied to sequential Bayes estimators, the Kalman filter, and the Wiener filter. In
Chapter 8 we explore in more detail minimum mean-squared error estimators and the
role that the conditional mean estimator plays. I derive conditional mean estimators
to solve a number of problems in signal processing: low-rank Wiener filters, linear
predictors, Kalman filters, low-rank approximations of random vectors, scalar and
block quantizers, and reduced-rank block quantizers. The last application produces
rate-distortion formulas of the Shannon variety. In Chapter 9 we develop the theory
of least squares for estimating parameters in the linear statistical model and stress the
singular value decomposition for the insight that it brings to least squares problems. We
then study the performance of least squares when errors are normally distributed. This
study produces order selection rules for reducing the rank of least squares estimators.
The middle sections of the chapter are devoted to special topics such as sequential,
weighted, constrained, and total least squares. The last several sections are devoted to
applications: inverse problems, mode identification, parameter estimation in ARMA
systems, linear prediction, and the identification of structured covariance matrices.
Chapter 9 is long, so some instructors may want to select just a few of the applications.

Time Series Analysis

In Chapters 10 and 11 we cover linear prediction and modal analysis. In our treatment
of linear prediction we begin with the classical stationary theory of Wold and Kol-
mogorov and establish the connection between linear prediction and maximum entropy
extension of correlation sequences. We then develop the nonstationary theory of fit-
ting order-increasing whiteners to finite covariance matrices, paying special attention
to the Levinson and Schur recursions for computing the reflection coefficients that
keep the recursions going. We study the least squares theory of linear prediction and
derive the lattice recursions for computing reflection coefficients. Linear prediction in
ARMA time series produces the MSK algorithms for fast Kalman filtering. In the last
two sections of the chapter we apply linear prediction to the computation of likelihood
and the design of a differential PCM system. In Chapter 11 we draw a distinction
between linear prediction and modal analysis. We study Prony’s method, exact least
squares, the total least squares of Golub and Van Loan, the principal components
of Tufts and Kumaresan, and MUSIC of Bienvenu and Schmidt as the most promi-
nent techniques for estimating modes. We outline pencil methods and then present
Kumaresan’s procedure for estimating modes from frequency domain data.
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