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Preface

Because a great many of the recent advances in seismology have depended
on the high speed computer, it is an ideal topic for the serial publication
Methods in Computational Physics. It is possible to select topics which define
key seismological problems, and, at the same time, illustrate the numerical
techniques found valuable in seismology. Hence Volumes 11 and 12, which
together attempt to bring the main developments of seismology up to date,
should prove themselves a useful text for seismologists, earthquake engineers,
and graduate students in those subjects.

The five articles in Volume 11 deal with the computational analysis of
surface waves and the eigenvibrations of the Earth. These subjects are related
both historically and theoretically as is made clear in the review by Takeuchi
and Saito. There are two principal types of seismic surface waves, called
Love and Rayleigh waves. The corresponding free vibrations of the whole
globe are of the topsional and sgériodal type. Progress in the calculation of
Rayleigh waves from the original derivation in 1885 for a homogeneous
elastic half-space had been such that textbooks in 1957 could only report
the numerical results for the propagation through two plane parallel layers.
By 1960, it had been shown that surface wave dispersion for an arbitrary
number of parallel layers could be treated readily by loop repetition on a
computer using a layer (or “transfer’’) matrix formation.

A further advance in the numerical modeling of geological structures
is described in the article by D. M. Boore, where the appropriate partial
differential equations with boundary conditions for heterogeneous materials
are solved using a rather intricate finite difference scheme. A competing
method, much used in structural engineering and soil mechanics, is described
in the following paper by J. Lysmer and L. A. Drake. Their numerical
procedure applies to linear viscoelastic Earth structures of rather general
type. The irregular structure is replaced by a system of connected finite
elements. '

The computer techniques of processing seismograms to obtain informa-
tion on the dispersion of seismic surface waves are presented by Dziewonski
and Hales. Cross correlation is shown to be a basic tool. The significance
to seismology of the Fast Fourier Transform (factorization method) is
critically explored and examples are given of data processing at different
frequencies. Fast algorithms for computation of eigenvalues is surface wave
and terrestrial eigenvibration problems are explained by Schwab and
Knopoft.
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Some of the numerical methods discussed in this volume have not yet
seen their full development. The thrust of future research will be to use
seismological measurements to infer the physical properties of more realistic
and refined three-dimensional Earth models. Lateral variation in upper
mantle structure, oceanic-continental boundaries, plate boundaries, and
mountain roots will be studied quantitatively for the first time using surface-
wave dispersion. The effect of soils and local geological structure on strong
earthquake shaking will be predicted by numerical methods.
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As MOST OF THE chapters in this book indicate, seismologists usually model
the velocity and density structure of the earth with heterogeneity in the

vertical direction only. Mathematical solutions for wave propagation

in

such models are relatively straightforward. There are a number of important
problems in seismology, however, for which lateral changes in material
properties are significant. Because the geometry in these cases cannot be
represented as normal surfaces in a system of separable coordinates the
solution of the direct problem is not simple, and some type of perturbation

or numerical solution is necessary.



2 DAVID M. BOORE

A number of different numerical sckemes of varying complexity have
been used to solve elastic wave propagation problems. In a continuing series
of papers Alterman and her co-workers have used a simple finite difference
method to solve the vector elastic equations of motion when subject to some
specific initial and boundary conditions (Alterman and Karal, 1968 ; Alterman
and Aboudi, 1969; Alterman et al., 1972; see chapter by Alterman and
Loewenthal in Volume 12 for a more complete list of Alterman’s papers). This
method was also used by Bertholf (1967) to solve for the transient displace-
ments in an elastic finite cylindrical bar subjected to applied stresses at one
end. Plamondon (1966) used a different, more complex method to compute
the motion due to a spherical source beneath the earth’s surface. Even more
involved methods, which are capable of following the motion through regions
of plastic, shock, or brittle behavior, have been devised by Maenchen and
Sack (1963) and Petschek and Hansen (1968), among others. Another com-
putational scheme which has been very successful in studying eigenvibration
problems and is currently attracting much attention in seismology is the
finite element method (see chapter by Lysmer and Drake, this volume).

Two other recently developed methods (not discussed in this volume) for
wave propagation in laterally heterogeneous media are the wave scattering
method of Aki and Larner (1970; Larner, 1970) and the perturbation method
of Claerbout (1970a, b, 1971), Claerbout and Johnson (1972), and Landers
(1971). These methods, potentially very valuable, have received little atten-
tion up to this time.

The usefulness of any of the above schemes depends greatly on the prob-
lem being solved; one must choose that method which gives reasonable
answers with the least amount of storage space and computer time. The
straightforward finite difference method discussed in this chapter is a prac-
tical way of solving a number of pertinent seismological problems. The
essence of this technique is to replace the differential equations and boundary
conditions by simple finite difference approximations in such a way that an
explicit, recursive set of equations is formed. This results in a time-marching
procedure which can be used to solve for the displacements at each grid
point as a function of time given the motion at the first two time steps.

There are many advantages to the finite difference method discussed in
this article. Some of these are that it is very easy to program, many different
problems can be solved with only minor alterations of the program, and the
preparation of input data for a particular problem is not tedious. Further-
more, as opposed to steady-state solutions, the use of transient signals gives
information at many frequencies from one computer run. The transient
signal, in combination with the explicit set of equations, also makes the
treatment of artificial boundaries (required by computer storage space
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limitations) more natural and less worrisome than in most other numerical
schemes. Another convenient feature is that displacements as a function of
time at a given site or pictures of the total wave field at a given time can be
obtained with equal ease.

The finite difference method will probably find its greatest use in solving
problems not possessing analytical solutions, but it can also compete with
the analytical solutions, especially when such solutions require the evaluation of
complicated series expansions (Alterman and Karal, 1968). The ease with
which it can be programmed makes the finite difference method an ex-
cellent pedagogical tool in illustrating concepts of wave propagation in
a dynamic, controllable manner. It is particularly useful for this if propaga-
tion is restricted to one dimension only, for then the computations are very
rapid.

The technique is limited, for practical reasons, to certain classes of
problems. It is difficult to enumerate these here, but in a general way we can
say that it is most useful in the near field region of sources, where the sources
can be either real or, as in this chapter, effective sources introduced by com-
plexities along the travel path. Thus, for example, it would be impractical
to use the finite difference method to evaluate the surface displacements of
a short period body wave incident upon an irregular crust-mantle interface.
On the other hand, it is ideal for the solution of a layered model in which
the layer thicknesses are on the order of the seismic wavelengths.

Finite difference methods for problems involving partial differential
equations have been developed and used for years in such disciplines as
meteorology and civil and mechanical engineering. To be useful in seismo-
logical problems, however, wave propagation in models having material-
property variations in at least two spatial dimensions must be treated. This
requires large amounts of computer space and rapid calculations, and it was
only several years ago that machines capable of handling such problems
were commonly available (one of the first papers dealing with numerical
wave propagation to appear in the seismological literature was by Cherry
and Hurdlow in 1966). Although there is no lack of possible methods based
on finite differences, relatively few have actually been tested and applied to
nontrivial seismological problems. It is the goal of this chapter to present
in detail the methods used and experience gained by the author in making
several of these applications, with the hope that it will stimulate others to
explore further the uses of the method. Several improvements included here
have not been discussed by the author in previous publications. Theoretical
aspects of finite difference solutions to partial differential equations have been
avoided. For these, reference should be made to one of the textbooks on the
subject (e.g., Richtmeyer and Morton, 1967).
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I1. Method

A. ASSUMPTIONS

The basic problem concerns transient wave propagation in a semi-infinite
half-space bounded by a stress free surface. The free surface need not be
planar nor must the material making up the half-space be homogeneous.
‘The material through which the waves propagate is assumed to be isotropic
and linearly elastic (the treatment of viscoelastic material is discussed briefly
in Section IT1,A). Because of storage space and computation time limitations
we assume that all variations in material properties, boundaries, and wave-
fields take place in only two spatial directions (x, z).

With these assumptions the general elastic motion can be uncoupled
into two types: horizontal shear motion (SH), characterized by displacements
v in the p direction only, and coupled compressional and shear motion
involving the x, z components of displacements u, w. Although many of the
methods discussed below can be applied to the complete vector equation,
this chapter will be concerned exclusively with SH motion. One of the
primary reasons for this is that less storage space and computer time are
required than in the corresponding vector elastic case, and thus more realistic
heterogeneities can be modeled within the space-time limits available.
Furthermore, the seismic radiation from earthquakes usually contains a
significant amount of SH motion and it is SH motion that is of greatest
interest in engineering seismology.

B. DERIVATIVE APPROXIMATIONS

1. Standard Formulas

The basis of the finite difference technique is the replacement of differ-
ential operators by difference approximations. These approximations can
be found in a number of ways; here we only intend to introduce notation
and present some formulas. Further details may be found in textbooks
such as Smith (1965) and Mitchell (1969).

The continuous X, z, ¢ space is divided into rectangular blocks. The
displacement field is then specified by values at the discrete set of nodepoints
represented by the corner intersections of the blocks. For constant x, z,
and ¢ spacing Ax, Az, and At, any node is uniquely determined with reference
to an arbitrary coordinate origin by the indices m, n, p. Thus v%, , = v(m Ax,
n Az, p At), where subscripts refer to spatial location and superscripts to time.
The absence of an index implies that the variable represented by that index
can take continuous values, as in v, , = v(m Ax, n Az, t). When interface
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conditions are discussed at a boundary between two media, the subscripts
1 and 2 will sometimes be used to denote the respective media. No confusion
should exist with the more usual subscripts representing spatial location.
As a final piece of nomenclature, in future discussions the term *computa-
tional star”” will be used; this refers to the spatial pattern of gridpoints used
in the difference approximation of a differential operator.

With the above notation, standard centered approximations for first
and second derivatives are

(00/0X) =~ Wpms1/2 — Vm-1/2)/AX, (1
(0%0)0x%) > Vms 1 — 20m + Um—1)/(AX). )
Another centered approximation to the first derivative is
(00/0x)y = (V41 = Vm-1)/28%. 3)
We will also use single-sided approximations, such as

(00/0X)m = (V41 — Vm)/AX, @)

to the first derivative. These are of a lower order of accuracy than the cen-
tered approximations in Egs. (1) and (3).

All of the above formulas apply, with obvious changes, to derivatives
with respect to z and ¢. Formulas for nonconstant Ax, Az, and At can also
be found easily (e.g., Boore, 1970b; Rowe, 1955). For example, the formula
for the second x-derivative is

v By v U1
(5), =2 e~ e + o) =
where h,, h, are the spacings between nodes m — 1, m and m, m + 1.

2. Attempted Use of Splines

For the wave equation in a homogeneous material we seek an approxi-
mation to the Laplacian operator acting on the displacement field at a given
time. This is obtained by using Eq. (2) and a corresponding expression for
the second z-derivative. Since one way of obtaining Eq. (2) is to differentiate
an interpolating quadratic polynomial fit to the three points m — 1, m, m + 1,
one might wonder if a better interpolating polynomial could be found which
would give similar accuracy but with larger grid spacings. In this way a given
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spatial area could be represented by a smaller number of grid points and
thus the computation time, which is proportional to the number of grid
points, would be reduced. As an exploratory attempt, bicubic spline functions
(Bhattacharyya, 1969) were fit to sets of points obtained by digitizing three
cycles of a sine wave at different rates. Derivatives of the resulting spline
function, evaluated at the node points, and difference approximations using
Eq. (3) and Eq. (2) on the tabulated set of points from which the spline was
generated, were then compared with the exact values. Figure 1 shows a meas-
ure of the mean percentage error, averaged over the second cycle (in order
to avoid end condition effects) of the sine wave, as a function of digitized

100.00—— T T T T
"

10.00

1.00

0.10

PERCENT ERROR

0.0l

0 10 20 30
GRID POINTS / WAVELENGTH

F1G. 1. The mean error, as a function of sampling rate, from spline and finite difference
approximations to the first (---) and second (—) derivatives of a sine function.

points per wavelength. The spline gives a better approximation to the first
derivative, but surprisingly, both the spline and finite difference approxima-
tion of the second derivative are nearly equivalent. Thus no obvious advantage
would seem to accrue from splines as used here, especially considering that
a matrix inversion (albeit a rapid one) is needed to generate the spline func-
tion. Splines, however, are finding utility in other areas of seismology, such
as in the smoothing of travel time tables (Curtis and Shimshoni, 1970),
calculation of divergence factors (Shimshoni and Ben-Menahem, 1970),
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calculation of ray theory amplitudes (Moler and Solomon, 1970), and
location of small earthquakes (Wesson, 1971). The negative result obtained
here does not imply that splines are not useful in other ways in the
numerical solution of differential equations; books such as Schoenberg
(1969) contain references to such techniques.

Disregarding splines, Fig. 1 shows the effect of grid spacing on the
accuracy of the finite difference approximations (2) and (3). For example,
at least 7 points are required per wavelength in order to obtain an accuracy
of 95% in the second derivative. More discussion about the wavelength—
gridspacing relationship will be found in Section ILE,1.

C. EQUATIONS OF MOTION

The basic equation for the displacement v in an inhomogeneous medium is
o 0 ( ov o ( ov
P ) o () iy

where u(x, z) is the rigidity of the material and p(x, z) is the density. Body
forces (f) have been neglected; if present, an additional term pf would be
added to the right-hand side. Since wave propagation through homogeneous
material joined along discrete interfaces is of most interest, a discussion of
the general heterogeneous equation of motion will be deferred until the
next section (which deals with boundary conditions). In a homogeneous
material Eq. (6) becomes

p 0%v/0t* = uVo. )
where V2 is the Laplacian operator. Replacing the derivatives by the differ-

ence approximation in Eq. (2), and gathering all the terms at time levels
p, p — 1 on the right-hand side, gives, as an approximation to Eq. (7),

o2t =208 , —ovhTl +B% Ar?
[Ban, =208+ 0h,  UR ey — 200, k0D
3 ’ : . ; (8)
(Ax) (4z)

where B = (u/p)'/? is the shear wave velocity. This is the basic equation
used in the computations. It is explicit in the displacement at the new time
level p + 1, and it is recursive; given initial displacements at two consecutive
time points it is a simple matter to compute displacements at any other time
by a forward time-marching process.
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In common with most explicit finite difference approximations to partial
differential equations, a condition relating the time and space grid intervals
must be satisfied if the solution to the difference equations is to be stable.
For the wave equation, this condition in practice is not excessively restrictive.
This is in contrast to the heat flow equation, where the stability condition is
so restrictive that implicit, unconditionally stable methods such as the alter-
nating direction implicit scheme (Mitchell, 1969) must be used.

Various implicit methods, based on splitting the two-dimensional problem
into several problems implicit in one direction only, do exist for the wave
equation; Mitchell (1969) gives a thorough discussion of these schemes.
Some are unconditionally stable and others, although requiring stability
relations, are highly accurate. These schemes are all implicit and require a
number of tridiagonal matrix inversions, for which there are very rapid
algorithms, to progress from one time step to the next. Although more
complicated than the explicit scheme given in Eq. (8), these methods may
be useful in certain classes of problems. Because these schemes are in large
part untested, however, there is a need for experimentation to determine
their usefulness and limitations.

D. BoUNDARY CONDITIONS

1. Physical Boundaries

Although Eq. (6) in combination with initial conditions completely
defines the problem, a special case arises where a discrete change in rigidity
occurs across some surface in the body. Then Eq. (6) implies both

(1 dvfon), = (u dvjom)_, ©)

where 0/0n is a derivative normal to the interface, and v, = v_. These
conditions can also be expressed as the continuity of normal stress and
displacement across the interface.

The explicit boundary condition at the stress free surface is

(av/an)surf. = 0 v (10)

We can get this from Eq. (9) by assuming (u)_ = 0.

Most published applications of the finite difference method to elastic
wave propagation involve plane, rather than curved, interfaces. For these, a
number of methods which involve explicit approximation to the interface
boundary condition (9) can be devised (Alterman and Karal, 1968; Bertholf,
1967; Boore, 1970a; Chiu, 1965). These approximations, however, are
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difficult to generalize to curved interfaces, and for this reason a relatively
crude but adequate method was derived by the author. For want of a better
name, this was called the explicit continuous stress method. Recently,
several methods based on the heterogeneous wave equation have been
investigated, and these appear to be superior in every respect to the explicit
continuous stress method. Both of these approaches to curved boundaries
are discussed below. Since these methods also work for plane interfaces
(which are just a particular form of a curved boundary), the more specialized
plane interface methods mentioned above will not be discussed.

a. Heterogeneous Media Approach. The interface condition (9) can be
derived by considering the behavior of the equation describing the motion of
a heterogeneous material, Eq. (6), as the distance over which the rigidity
change occurs decreases to zero. This suggests that a natural way of treating
the interface is to write approximations to Eq. (6) at the grid points near the
interface. Two approximations are given below, and both reduce to Eq. (8)
when the medium has uniform properties.

We are concerned only with the approximation of the right-hand side of
Eq. (6); the time derivative can be replaced by the standard centered differ-
ence approximation. If the first derivative operator (1) is applied consecu-
tively, the x-derivative is given by '

0 O\ Hm+1/20ms1 = (Bme1/2 + Bm—1/2)0m + Bm—1/2Vm—1
63- z
x ' Ox (Ax)
The approximation of the z-derivative is similar. Since we have detailed
knowledge of the rigidity for any point in space, evaluating it midway
between grid points, as implied by 1,41, and p,_y,2, is not a problem.
Another approach which depends more on the detailed variation of
u(x, z) is due to Tikhonov and Samarskii (Mitchell, 1969, p. 23). To start, a
variable w, defined by

w = — p(0v/0x), (12)
is introduced. The equation above is rewritten
wlp = —0v/ox (13)

and integrated over the interval [(m — 1) Ax, m Ax]. Replacing w byaconstant
““mean-value” w,,_,/, gives

o
Wi—1/2 fxm_l ll(X, Z) = _(vm - vm-—l)s (14)



