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In their effort to study the particles from outer
space, scientists managed to smooth their surface
roughness out, before the particles reach. the atmosphere.
With their roughness switched off, these particles witd not
burn in the atmosphere and witl be colfected and studied.
Unfort‘unaielj, something went wrong, with disastrous ...,
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Preface

It is often said that everybody knows what texture is but nobody can define it. Here is
an unconventional definition: texture is what makes life beautiful; texture is what makes
life interesting and texture is what makes life possible. Texture is what makes Mozart’s
music beautiful, the masterpieces of the art of the Renaissance classical and the facades of
Barcelona’s buildings attractive. Variety in detail is what keeps us going from one day to the
next and the roughness of the world is what allows us to walk, communicate and exist. If
surfaces were smooth, friction would not exist, the Earth would be bombarded by asteroids
and life would not have developed. If surfaces were smooth, pencils would not write, cars
would not run, and feet would not keep us upright.

Texture is all around us, and texture is also on the images we create. Just as variation
in what we do allows us to distinguish one day in our life from another, texture allows us
to identify what we see. And if texture allows us to distinguish the objects around us, it
cannot be ignored by any automatic system for vision. Thus, texture becomes a major part
of Image Processing, around which we can build the main core of Image Processing research
achievements.

This book is exactly trying to do this: it uses texture as the motivation to present some of
the most important topics of Image Processing that have preoccupied the Image Processing
research community in the recent years. The book covers the topics which have already been
well established in Image Processing research and it has an important ambition: it tries to
cover them in depth and be self-contained so that the reader does not need to open other
books to understand them.

The book is written on two levels. The top, easy level, is for the reader who is simply inter-
ested in learning the basics. This level is appropriate for an undergraduate or Master’s level
course. The second level goes in depth, demonstrating and proving theorems and concepts.
This level is appropriate for research students. Examples that refer to the advanced
level are marked with a B and the theory of this level is presented in boxes with
a grey background. In a sense, the book is an interlacing of mainstream material and
appendices that cover advanced or even peripheral issues.

The book aspires to be a classical textbook on Image Processing and not an account of
the state of the art. So, the reader who hopes to find here the latest algorithms proposed,
will be disappointed.

A large part of this book was written when the first co-author was on sabbatical at the
Informatics and Telematics Institute in Thessaloniki, Greece. The support of the Institute
as well as the support of our home institutions, namely the University of Surrey for the first
co-author when writing this book, and the University Jaume I, throughout this endeavour is
gratefully acknowledged.



xvi Preface

We would also like to thank the Media Lab of the Massachusetts Institute of Technology
for allowing us to use five images from the VisTex database, the Signal and Image Processing
Institute of the University of Southern California for allowing us to use three images from
their USC-SIPI Image database, and Dr Xavier Llado who supplied the images shown in
figures 1.5 and 1.6.

For the accompanying website please visit www.wiley.com/go/texture.
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Chapter 1

Introduction

‘What is texture?

Texture is the variation of data at scales smaller than the scales of interest. For example, in
figure 1.1 we show the image of a person wearing a Hawaiian shirt. If we are interested in
identifying the person, the pattern on the shirt is considered as texture. If we are interested in
identifying a flower or a bird on the shirt, each flower or bird of the pattern is a non-textured
object at the scale of this image, as we can hardly see any details inside it.

Figure 1.1: Costas in bloom.

Why are we interested in texture?

We are interested in texture for two reasons:

e Texture may be a nuisance in an automatic vision system. For example, if we were to
recognise an object from its shape, texture would create extra lines in the edge map of
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2 Image Processing: Dealing with Texture

the object and the shape recognition algorithm would be confused. This is demonstrated
in figure 1.2.

e Texture may be an important cue in object recognition as it tells us something about
the material from which the object is made. For example, in the image of figure 1.3 we
may discriminate the city from the woods and the fields, from the type of variation the
image shows at scales smaller than the objects we are talking about.

(b) ()

Figure 1.2: (a) An original image. (b) Manually extracted edge map. (c) The automatic edge
extraction algorithm is confused by the presence of texture on the box.

\ /%?z;).

(a)

Figure 1.3: (a) Bluebury from an aeroplane. (b) Edge map where the urban area has been
annotated. Other texture patches correspond to woods.




