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Preface

y objective with this book is to introduce, discuss, and illustrate
Mhow to design, simulate, build, and test linear low-dropout

(LDO) regulator integrated circuits (ICs). The driving inspi-
ration for this effort is the increasingly important role LDO regulator
ICs play in modern-day and emerging state-of-the-art applications,
as the demand and promise of system-on-chip (SoC) integration con-
tinues to drive old and create new markets. The fact is the ubiquity
of noisy and unpredictable input sources and loads demands
point-of-load (PoL) regulators that draw little to no power yet
generate increasingly accurate and fast-responding supply voltages.
As a result, mixed-signal ICs that traditionally excluded power-
conditioning features must now embed system and PoL power supplies,
of which linear regulators comprise a large fraction because their
switching counterparts alone generate outputs with unacceptably
high noise content.

A pedagogical presentation of linear regulators, however, must
invariably include analog IC theory and design because linear regu-
lator ICs are, as much as operational amplifiers (op amps) are, intrin-
sically analog. As a result, this book, in setting a foundation for linear
regulators, also reviews analog theory, as some popular books in the
industry also do, but from an intuitive, design-oriented perspective,
one that [ have found useful and necessary when designing ICs. The
idea is to understand devices, circuits, and systems well enough at
the physical level to predict their individual and combined character-
istics without resorting to equations or books, the by-product of
which is also being able to reproduce and verify the equations and
theory already found in textbooks. As such, this book presents solid-
state semiconductor theory, circuit design and analysis of basic ana-
log building blocks, and feedback concepts, and shows how to apply
them to the ac and IC design of an analog system: a linear regulator.
In other words, this book includes a fairly comprehensive treatment
of analog IC design.

I wrote the book with the intention of introducing and leading a
novice microelectronic engineer through the entire analog IC design
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process, through the eyes of a linear regulator, which embodies
numerous aspects of the art. Notwithstanding, the book also aims to
enlighten practiced analog IC designers with little experience in the
field of regulator ICs. The book also targets experienced regulator IC
engineers who wish to not only review some analog and linear regu-
lator principles from an intuitive yet still academic perspective but
also ascertain and expand their understanding of the state of the art
in the field of linear regulator ICs.

The tone, format, and thought process presented in the book
embodies my combined experience in industry as an analog IC
designer and academia as professor and researcher. From industry,
for instance, I discovered the art of design and the value of product
development, so the book places emphasis on intuitive insight, over-
all system objectives, IC development process, and circuit reliability.
As professor and researcher, I continue to learn the art of a pedagogi-
cal presentation and the value of technical depth and outside-the-box
thinking. What the reader sees in this book is therefore my attempt at
drafting a practical yet academically valuable treatment of analog IC
design and linear regulator ICs. I must confess, however, I still have
much to learn, so I hope my devotion to the book and the field at
large ultimately wins enough of the reader’s favor to pardon any
deficiencies, inconsistencies, and inaccuracies the reader may find in
the book.

With respect to organization, I divided the book into eight chapters.
The first chapter is analogous to the product-definition phase (but
with an academic undertone), when a semiconductor company
justifies a design effort by defining the role and operational objectives
of the proposed system. Before attempting to undertake the design,
however, a novice engineer must first train in the art of analog IC
design, which is why the second, third, and fourth chapters discuss
solid-state theory and devices, circuit building blocks, and feedback,
respectively. The fifth chapter focuses on ac system-design issues and
corresponds to the second step in a prototype-development effort;
here the designer applies the circuit and feedback principles discussed
in the previous two chapters. The next two chapters apply and com-
bine the device know-how presented in the second chapter with the
teachings of the next few chapters to design the actual IC, first at the
component level (sixth chapter) and then at the system level (seventh
chapter). The development process, from an IC designer’s perspec-
tive, culminates in these two chapters because all analog training con-
verges here, with IC design. Finally, the eighth chapter incorporates
protection and discusses characterization, the final two steps in a
product-development cycle. As a whole, the book is an example of a
top-down-top design approach because it starts with an abstract view
of the system for context, then dives down to devices for training,
slowly rising through circuits, until finally reaching the system again,
but now the final design, at the transistor level.
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Novice engineers may use this book to learn about analog IC
design by reviewing the entire design process by traversing through
all eight chapters sequentially. They may also seek to enhance their
understanding of specific analog design principles, in which case
they might target specific chapters such as Chaps. 2 to 4 for devices,
circuits, and feedback and Chap. 5 for important ac design and
stability considerations. Trained analog designers with little regulator
experience who do not wish to review basic analog principles but
wish to design linear regulator ICs may target Chap. 1 for system
perspective and Chaps. 5 to 8 for regulator-specific issues. Experienced
regulator IC designers, on the other hand, may pinpoint specific sec-
tions in Chaps. 1 and 5 to 8 to enhance their understanding of the
state of the art. With all this in mind, I divided each chapter into self-
inclusive sections and sections into what I thought were relevant and
subject-specific subsections, assigning titles I thought were meaning-
ful, so I hope the Contents facilitates the process of targeting chapters,
sections, and subsections.

Gabriel Alfonso Rincdn-Mora, Ph.D.
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CHAPTER 1

System
Considerations

1.1 Regulators in Power Management

Supplying and conditioning power are the most fundamental func-
tions of an electrical system. A loading application, be it a cellular
phone, pager, or wireless sensor node, cannot sustain itself without
energy, and cannot fully perform its functions without a stable sup-
ply. The fact is transformers, generators, batteries, and other off-line
supplies incur substantial voltage and current variations across time
and over a wide range of operating conditions. They are normally
noisy and jittery not only because of their inherent nature but also
because high-power switching circuits like central-processing units
(CPUs) and digital signal-processing (DSP) circuits usually load it.
These rapidly changing loads cause transient excursions in the sup-
posedly noise-free supply, the end results of which are undesired volt-
age droops and frequency spurs where only a dc component should
exist. The role of the voltage regulator is to convert these unpredictable
and noisy supplies to stable, constant, accurate, and load-independent
voltages, attenuating these ill-fated fluctuations to lower and more
acceptable levels.

The regulation function is especially important in high-performance
applications where systems are increasingly more integrated and
complex. A system-on-chip (SoC) solution, for instance, incorporates
numerous functions, many of which switch simultaneously with the
clock, demanding both high-power and fast-response times in short
consecutive bursts. Not responding quickly to one of these load-current
transitions (i.e., load dumps) forces storage capacitors to supply the
full load and subsequently suffer considerable transient fluctuations
in the supply. The bandwidth performance of the regulator, that is, its
ability to respond quickly, determines the magnitude and extent of
these transient variations.

Regulators also protect and filter integrated circuits (ICs) from expo-
sure to voltages exceeding junction-breakdown levels. The requirement

1
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is more stringent and acute in emergent state-of-the-art technologies
whose susceptibility to breakdown voltages can be less than 2 V. The
growing demand for space-efficient, single-chip solutions, which
include SoC, system-in-package (SiP), and system-on-package (SoP)
implementations, drives process technologies to finer photolitho-
graphic and metal-pitch dimensions. Unfortunately, the maximum
voltage an IC can sustain before the onset of a breakdown failure
declines with decreasing dimensions and pitch because as the compo-
nent density increases, isolation barriers deteriorate.

References, like regulators, generate and regulate accurate and sta-
ble output voltages that are impervious to variations in the input sup-
ply, loading environment, and various operating conditions. Unlike
regulators, however, references do not supply substantial dc currents.
Although a good reference may shunt positive and negative noise cur-
rents, its total load-current reach is still relatively low. In practice, refer-
ences supply up to 1 mA and regulators from 5 mA to several amps.

Linear versus Switching Regulatorsk

A voltage regulator is normally a buffered reference: a bias voltage
cascaded with a noninverting op-amp capable of driving large load
currents in shunt-feedback configuration. Bearing in mind the broad
range of load currents possible, regulators are, on a basic level, gener-
ally classified as linear or switching. Linear regulators, also called series
regulators, linearly modulate the conductance of a series pass switch
connected between an input dc supply and the regulated output
to ensure the output voltage is a predetermined ratio of its bias ref-
erence voltage, as illustrated in Fig. 1.1a. The term “series” refers to
the pass element (or switch device) that is in series with the unregu-
lated supply and the load. Since the current flow and its control are

NOTE ON TEXT: To complement and augment the verbal explanations
presented in this book, an effort has been made to conform variable
names to standard small-signal and steady-state naming conven-
tions. Signals embodying both small-signal and dc components use
a smaller-case name with uppercase subscripts, like for instance
output voltage v .. When referring only to the dc component, all
capitals are used, as in V;, and similarly, when only referring to
small-signal values, the entire name, including subscripts, is in lower
case, as in v, ;. As also illustrated by the previous example, the vari-
ables adopt functionally intuitive names. The first letter usually
describes the signal type and its dimensional units such as v for volt-
age, i for current, A or G for amplifying gain, p for power, and so on.
The subscript tends to describe the function or node to which the
variable is attached, such as “out” for the output of the regulator,
“reg” for a regulated parameter, and so on.
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Ficure 1.1 (a) Basic linear and (b) switching regulator circuits.

continuous in time, the circuit is linear and analog in nature, and
because it can only supply power through a linearly controlled series
switch, its output voltage cannot exceed its unregulated input supply
(e, Vo < V)

A switching regulator is the counterpart to the linear solution, and
because of its switching nature, it can accommodate both alternating-
current (ac) and direct-current (dc) input and output voltages, which
is why it can support ac-ac, ac-dc, dc-ac, and de-dc converter functions.
Within the context of ICs, however, dc-dc converters predominate
because the ICs derive power from available dc batteries and off-line
ac-dc converters, and most loading applications in the IC and outside
of it demand dc supplies to operate. Nevertheless, given its ac-dc con-
verting capabilities, switching regulators are also termed switching con-
verters, even if only dc-dc functions are performed.

From a circuit perspective, the driving difference between linear
and switching regulators is that the latter is mixed-mode with both
analog and digital components in the feedback loop (Fig. 1.1b). The
basic idea in the switching converter is to alternately energize induc-
tors and/or capacitors from the supply and de-energize them into the
load, transferring energy via quasi-lossless energy-storage devices. To
control the network, the circuit feeds back and converts an analog
error signal into a pulse-width-modulated (PWM) digital-pulse train
whose on-off states determine the connectivity of the aforementioned
switching network. From a signal-processing perspective, the func-
tion of the switching network is to low-pass-filter the supply-level
swings of the digital train down to a millivolt analog signal, the aver-
age of which is the regulated output.

The blocks that normally comprise a de-de converter include a
PWM controller, which is the combination of an analog linear ampli-
tier and a pulse-width-modulated analog-digital converter, as shown
in Fig. 1.1b, synchronous and/or asynchronous switches (i.e., transis-
tors and/or diodes), capacitors, and, in many cases, inductors. Many
switched-capacitor implementations do not require power inductors,
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sometimes making total chip integration possible. These integrated,
inductorless converters, however, cannot typically supply the high-
current levels the discrete power inductors can, which is why they
normally satisfy a relatively smaller market niche in low-power
applications.

Switching regulators, unlike their linear counterparts, are capable
of generating a wide range of output voltages, including values below
and above the input supply. Buck converters, for instance, generate
output voltages lower than the input supply (i.e., V, , < V, ) while
boost converters deliver the opposite (i.e., V>V, )—charge pump is
the name normally applied to an inductorless buck or boost con-
verter. Buck-boost converters, as the name implies, are a combination
of both buck and boost circuits and they are consequently capable of
regulating output voltages both above and below the input supply. In
spite of the apparent flexibility and advantages of switching supplies,
however, linear regulators remain popular in consumer and high-
performance electronics, as the next subsection will illustrate.

1.2.1 Speed Tradeoffs

Linear regulators tend to be simpler and faster than switching con-
verters. As Fig. 1.1 illustrates, there are fewer components in a linear
regulator, which imply two things: simplicity and less delay through
the feedback loop, in other words, higher bandwidth and therefore
faster response. The PWM controller, and more specifically, the pulse-
width-modulated analog-to-digital converter, is generally a relatively
laborious block to design, often requiring a clock, comparators, non-
overlapping digital drivers, and a saw-tooth triangular-wave genera-
tor. For a stable switching converter in negative feedback, the switch-
ing frequency is often a decade above the bandwidth of the loop,
further limiting its response time to orders of magnitude below the
transitional frequency (f,) of the transistors available in a given pro-
cess technology. Because of this, and the fact they are relatively com-
plex circuits (i.e., more delays across the loop), de-dc converters
require more time to respond than linear regulators, 2-8 us versus
0.25-1 us. The switching frequencies of these devices are between 20
kHz and 10 MHz. Although higher switching frequencies can reduce
the ripple content of the output voltage and/or relax the LC-filter
requirements, they are often prohibitive because they increase the
switching power losses of the converter beyond acceptable limits—
increasing power losses demands more energy from the battery and
therefore reduces its runtime.

1.2.2 Noise

Switching regulators are noisier than their linear counterparts are, and
Fig. 1.1 illustrates this by the presence of digital signals in the ac-feedback
path of the circuit. Power switches, which are large devices conducting



