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Foreword

Dr. Alan Williams has acquired a considerable experience in work with transition metal
complexes at the Universities of Cambridge and Geneva. In this book he has tried to
avoid the variety of ephemeral and often contradictory rationalisations encountered in
this field, and has made a careful comparison of modern opinions about chemical bond-
ing. In my opinion this effort is fruitful for all students and active scientists in the field
of inorganic chemistry. The distant relations to group theory, atomic spectroscopy
and epistemology are brought into daylight when Dr. Williams critically and pedagogic-
ally compares quantum chemical models such as molecular orbital theory, the more
specific L.C.A.O. description and related ligand field** theory, the valence bond treat-
ment (which has conserved great utility in antiferromagnetic systems with long inter-
nuclear distances), and discusses interesting, but not too well-defined concepts such as
electronegativity (also derived from electron transfer spectra), hybridisation, and oxid-
ation numbers.

The interdisciplinary approach of the book shows up in the careful consideration
given to many experimental techniques such as vibrational (infra-red and Raman), elec-
tronic (visible and ultraviolet), Mossbauer, magnetic resonance, and photoelectron
spectra, with data for gaseous and solid samples as well as selected facts about solution
chemistry. The book could not have been written a few years ago, and is likely to re-
main a highly informative survey of modern inorganic chemistry and chemical physics.

Geneva, January 1979
C.K. Jgrgensen



Introduction

"It is in the nature of an hypothesis, when once a man has
conceived it, that it assimilates everything to itself, as pro-
per nourishment, and from the first moment of your beget-
ting it, it generally grows the stronger by everything you
see, hear, read or understand. This is of great use. **

Laurence Sterne
'The life and opinions of Tristram Shandy

It has become almost traditional to begin inorganic chemistry books with a remark on
the growth of the subject in the past 25 years. For the student of chemistry, this has
resulted in a great increase in the amount of material he has to learn, much of which is
separated into apparently unrelated topics such as ligand field theory, electron deficient
compounds, the ionic model, etc. This book is intended to show that an approach that
takes as its starting point the elementary molecular orbital model of the chemical bond
may be developed painlessly to cover the whole subject, and to throw into relief the
particularities, differences and similarities of the various sub-divisions of inorganic
chemistry. I hope that this will not only aid the understanding and the memorisation
of inorganic chemistry, but will also help the reader develop a certain chemical intuition.
The book is intended to illustrate the use of theoretical models in studying chemistry,
and not the use of chemistry in supplying facts for the delectation of theories.

The theoretical approach I advocate is essentially qualitative, and is intended to
provide a basis for the subject as a whole, rather than an accurate method of calculation
or prediction in a narrow field. The theories of chemical bonding themselves are not
particularly complicated, but their application requires a critical understanding, and
a good deal of common sense. I have attempted to follow a logical course in present-
ing the various subjects, but it should be borne in mind that the division into chapters
is artificial: the reactivity of a molecule is directly related to its electronic structure,
even if the subjects are discussed in different chapters. Certain sections treating more
advanced or more mathematical topics are marked with an asterisk, and may be skipped
at a first reading.

The quantum mechanics and group theory used in the book are introduced in the
first chapter. I have used a certain amount of mathematics wherever it simplifies the
discussion, but have also included non-mathematical summaries at the end of each
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section as it is important that the reader has a sound understanding of the physical
principles to follow the remainder of the book. It is interesting to note that the comp-
licated* mathematical part of the subject dates mostly from the 1920’s, whilst the
more qualitative application of quantum mechanics is much more recent.

Chapter 2 introduces L.C.A.O. molecular orbital theory for simple molecules, and
endeavours to emphasise the physical principles of the method;in Chap. 3 this approach
is used to describe the electronic structures of a wide variety of inorganic compounds.
Chapter 4 treats the electronic spectra and magnetic properties of inorganic compounds,
and is concerned mainly with d and f block elements. Chapter 5 discusses some other
theories of chemical bonding, the use of thermodynamic data in inorganic chemistry,
and some of the general concepts often used in descriptive chemistry. The relationship
between electronic structure and reactivity is discussed in Chap. 6. Chapter 7 is an
illustrative chapter showing the application of the approach introducted in previous
chapters to the hard facts of descriptive chemistry. The final chapter gives a résumé of
the spectroscopic methods referred to in the text, and discusses their chemical useful-
ness.

The book presents an approach to the subject, and not a complete treatment of
inorganic chemistry, an impossible task in a book of this length. I have given references
to more detailed treatments of the topics discussed in the bibliographies at the end of
each chapter. At the end of each chapter there are also a few problems which further
illustrate points discussed in the text, and indicate other applications. Most problems
require only a few moments of reflection, and I hope that the reader will look at them
as they are intended to encourage the use of his own critical faculties and common
sense. Those nervous about quantum mechanics may find the first two chapters the
most difficult, but, if they can understand the physical principles introduced therein,
the rest of the book may be followed with little difficulty; the word ’theoretical® is
not included in the title as a euphemism for complicated. I hope that the book will
give a wide view of the subject, and will serve as a useful complement to more detailed
descriptive studies of inorganic chemistry.

I should like to thank the Master and Fellows of Emmanuel College, Cambridge
whose award of a Research Fellowship enabled me to take the opportunity of writing
this book, and Professor W. Haerdi, Director of the Département de Chimie Minérale,
Analytique et Appliquée of the University of Geneva where the book was finished. I
am particularly grateful to Professor C.K. Jgrgensen of Geneva, who kindly wrote the
Foreword, and Dr. 4.G. Maddock of Cambridge, both of whom not only read the
whole manuscript and made many helpful comments and corrections, but also, by their
enthusiasm for the subject and their willingness to discuss it, have made a substantial
contribution to such knowledge of inorganic chemistry as the author may possess. I
also thank Drs. L. Balsenc, U. Burger, Professor M. Marcantonatos, and Dr. V. Partha-
sarathy for having read and commented on parts of the book, and Dr. N. Thalmann-
Magnenat for the figures reproduced from her thesis. Such errors and blemishes as
remain are due to the author’s intransigence or ignorance.

Two of the less agreeable aspects of writing a book are the effects in the author’s
temper and the volume of typing produced: both difficulties were faced with great
tolerance by my wife, and this book is accordingly dedicated to her with apologies.

Geneva, January 1979
A.F. Williams
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1. Quantum Mechanics and Atomic Theory

Inorganic chemistry is concerned with the chemistry of over an hundred elements,
forming compounds whose stability ranges from that of mountains and minerals to
species with lifetimes of less than a millisecond. Clearly, if the subject is to be more
than a vast catalogue of apparently unrelated facts, we must seek a theoretical founda-
tion which will enable us to rationalise and relate as many observations as possible. From
this point of view, the development of ideas of chemical periodicity (by Mendeleyev
and others) during the latter half of the nineteenth century stands as the starting point
of theoretical inorganic chemistry. The first periodic table was drawn up on the basis
experimental observations; soon after the introduction of quantum theories of the
atom, it was shown by Rutherford and Bohr that the same table could be derived from
the electronic structure of the individual elements. Following this demonstration, all
theories of chemistry have been based more or less rigorously on the quantum theory
of matter.

Exact calculations in quantum chemistry rapidly become very complicated, but the
remarkable success of quantum mechanics in explaining spectra, and the reasonable
success of approximate calculations give a sound justification for the use of quantum
mechanics as a starting point. The quality of quantum chemical calculations is improv-
ing steadily, and for compounds of the first row of the Periodic Table, the accuracy
and predictive power of some methods are now chemically useful. Nonetheless, for
most inorganic compounds, calculations are only of value when a large number of
effects can either be ignored, satisfactorily approximated, or replaced by experimentally
determined values.

The approach in this book will be mainly qualitative, and we shall be more interested
in physical principles than in mathematical details; we will try to justify the assumptions
and approximations made by recourse to experimental evidence, most frequently that
obtained from spectroscopic measurements. This chapter is concerned with establishing
the elements of quantum mechanics that we shall need, the use of symmetry to sim-
plify our calculations, and the approximate quantum treatment of atomic structure.
Those who find quantum mechanics frightening should note that there is a simplified
summary at the end of each section and that sections marked with an asterisk are
rather more mathematical and may be omitted at a first reading. This is not a quantum
chemistry book, and the treatment given is very brief; those completely unfamiliar
with quantum mechanics may wish to consult one of the many introductions to quan-
tum chemistry (see Bibliography, page 37).
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A. Elements of Quantum Mechanics 3

A. Elements of Quantum Mechanics

Quantum mechanics postulates that any system may be completely described by a wave
function ¥ whichisa function of all the variables of the system. For an isolated hydro-
gen atom, if the nucleus is taken as the origin of the coordinate system, the wave func-
tion will be a function only of the coordinates of the electron. We require for all wave
functions discussed in this book that they be solutions of the time independent Schro-
dinger equation:

H Y=Ey (1.1)

where ¥ is the wave function of the system we are discussing, £ is the energy of the
system described by {, and./# is a well-defined mathematical operator called the Hamil-
tonian. An operator is a mathematical entity which, acting on a function, changes it

(for example, in the expression dix (f (x)), dix is an operator, since the result is a new
function; similarly, 1/x may be regarded as an operator, since the product % f (x)

gives a new function). Operators are generally denoted by script letters. The Hamilt-
onian operator, which is related to the energy of the system, is constructed according
to a set of quantum mechanical rules and consists of a sum of terms representing
every contribution to the energy of the system. Thus, for the hydrogen atom, the
operator will have components from the kinetic energy of the electron, and the poten-
tial energy of the electron nucleus interaction. A hydride ion (H") with two electrons
will have kinetic energy terms (one for each electron), and potential energy terms due
to electron-nuclear and electron-electron interactions.

The Schrodinger equation is a specific example of a general mathematical equation
known as an eigenvalue equation, which has the form:

(operator) - (function) = (number) - (the same function) (1.2)

In general, only a certain set of functions will obey Eq. (1.2), and when the product
of an operator and a function gives the same function multiplied by a simple number,
the function is said to be an eigenfunction of the operator, and the simple number is
known as the eigenvalue. Thus:

(operator) - (eigenfunction) = (eigenvalue) - (eigenfunction) (1.3)

The Schrodinger equation is thus nothing more than the eigenvalue equation of the
energy operator, the Hamiltonian; furthermore, since the equation will hold only for
specific values of £ and Y, we see that we have arrived at a quantisation of energy
levels. The Eq. (1.3) is frequently found in quantum mechanics, and each experimen-
tally observable quantity is the eigenvalue of a corresponding operator. If a given wave
function is not an eigenfunction of a particular operator, then the experimental observ-
able associated with the operator is not well defined; thus, if a wave function is not
an eigenfunction of the Hamiltonian, then the energy of the system is not well defined,
and is indeterminate, i.e. an exact value cannot be measured. Our requirement that the
Schrodinger equation be obeyed is thus a requirement that our system has a well defi-

ned energy which does not change with time.
A wave function which is a solution to the Schrodinger equation (and henceforth,

we shall use the term wave function only for such solutions) may also be an eigen-
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function for other operators. In the case of the hydrogen atom, the wave functions are
also eigenfunctions of the orbital angular momentum operators ¥'2 and ¢, (the
square of the orbital angular momentum, and its component along one, arbitrarily cho-
sen axis), and consequently the wave functions have well defined and measurable values
of these quantities. The condition for a function to be an eigenfunction of two opera-
tors Oy, O, is that O, followed by O, has the same result as O, followed by O, or
that O and O, commute. The commutativity of operators, and consequent measur-
ability of their observables is closely related to Heisenberg’s uncertainty principle.

If every physically observable quantity is the eigenvalue of its corresponding opera-
tor, what is the physical interpretation of the wave function itself? Born suggested that
the value of the square of the wave function Y2 (for complex wave functions, the
square of the modulus y*y or |§ | 2) of a particle at a point r is the probality that the
particle is at that point. Turning again to the hydrogen atom, the value of [{/12 at a
given point is the probability of finding the electron there. However, Heisenberg’s
uncertainty principle warns us against regarding the electron as localised at a particular
point; we should do better to regard the electron as having a certain probality density
within a certain volume element which is equal to the integral of | ¢ | 2 within that vol-
ume. The concept of electron density is extremely useful in discussing electronic wave
functions, and we adopt Born’s interpretation without further question.

If the electron exists at all, the sum of its probability density over all space must
equal 1. This may be expressed by the integral

jauspacew*'d’dtzl (1.4)
The function  is said to be normalised. Since .#y = E , multiplying both sides of
Eq. (1.1) by y* gives:

VA = YEEY
We may now integrate both sides of this equation over all space, noting that £ is a
number and may therefore be taken outside the integral to give:

j;iﬂspace l[/*gfll/d1'=E jall space "der:E (1.5)
We have thus obtainied an explicit expression for the energy of the system.

The wave function Y must satisfy certain conditions: it must be single valued, since
at any point there can only be one value of the probability; it must be continuous, as

must its first derivative (i.e. %—XQ); it must obey the boundary conditions of the system.

Thus, for the hydrogen atom, the wave function must fall to zero at infinite distance
from the nucleus for the electron clearly has an infinitely small probability density at
this distance. The imposition of boundary conditions in Eq. (1.1) severely restricts
the number of solutions, and is of vital importance in establishing quantisation of
energy.

a) The Hydrogen Atom

This is the only system of chemical significance for which the Schrédinger equation
can be solved exactly, apart from the trivial extensions to He*, Li2*, Be3* etc., all
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having only a nucleus and one electron. The exact calculation is found in many texts!,
so let us look only at the qualitative features. First, we must construct the Hamiltonian
operator — this contains a term for the kinetic energy of the electronic motion, and
also for the electron nucleus attraction. This second term (-e2/4 7 €, r) falls off as 1/r,
the distance of the electron from the nucleus; since this function (1/r) has spherical
symmetry about the nucleus, it will clearly be a good idea to adopt a coordinate system
which reflects this. We therefore place the nucleus at the origin, and solve the equation
using spherical polar coordinates, r, 6, ¢ for the electron’s position. The equation is

e ( Hkin +'7/7electron-nucleus) V(r,0,0)=E Y(r,0,9) (1.6)
The solutions are given by:
Y(r,0,¢) =R(n L) Y(,m0,¢) (1.7)

where for Eq. (1.6) to hold, #, /, and m have integral values, and specify the forms of
the two functions R and Y, it is more usual to specify these functions by writing n, /,
and m as subscripts:

djn[m(rsa’ ¢)=Rnl (r) Ylm(g’ ¢) (18)

n, I, and m are quantum numbers which specify the wave function. It is found that the
energy F,,,, corresponding to the wave function y,,;,,, is

E . =K/n? (1.9)

nlm
where K is a product of various fundamental quantities. Since E does not depend on /
and m, the functions y,,;,, correspond to the same energy of the system for all / and m
if n is fixed. However, Eq. (1.8) is only valid if / and m have integral values obeying the
following rules: -

0<I<mn ;-1<m<+

thus for fixed values 0f{1 and / there are (2/ + 1) solutions of the Schrodinger equation.
e
For fixed n there are £ (27+ 1) =n2 separate solutions all with the same energy. Sep-

parate solutions of theOSchrbdinger equation with the same energy are said to be dege-
nerate. Thus we may say that solutions of the Schrodinger equation for the isolated
hydrogen atom are of the form Y, (1, 0, ¢) = R, i(r) Y;,n(0, ¢), are degenerate for
all /, m, given fixed n, and that 0 </ <n and —/ <m </, and that the energy of these
solutions is given by:

Enim = Jatl space Ym0 0.0 Y (1, 0, 9) = K/n2 (1.10)

Dirac introduced a very elegant system of notation which avoids the continual use of
subscripts and integral signs:

(i) ¢, isdenotedby | a >

(ii) \[J; is denoted by < a |

(iii) Lu space \P: Vp isdenotedby < a | b >
Thus we may rewrite Eq. (1.10) as:
Eppp = < nlml A |nlm > = K/n? (1.10a)

For example, see Murrell, Kettle, and Tedder (see Bibliography, page 37).
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This ’bracket‘ notation is extremely convenient and we shall use it extensively.

Following Eq. (1.4), it is found that < nlm | nlm > = 1; this is the normalisation
condition. If a wave function ¥, is not normalised, so that < ala > =oa(for exam-
ple), then the wave function yp = (1/5&) Yg will be normalised (< b | b > = 1).
This is clearly a trivial alteration, and we shall henceforth assume all wave functions to
be normalised.

Another property of the wave functions ¢,,;,,, is that the integral

nlm
* _ A i,
.{all space lbnlm d/n'l’m' =<wnm | n'l ' m>=0

unless n = n', [ =1I', m = m'. This is a fundamental property of eigenfunctions, known
as orthogonality. Any eigenfunction corresponding to a given eigenvalue will be
orthogonal to all others corresponding to a different eigenvalue. For degenerate eigen-
functions, the problem is a little more complicated if two eigenfunctions Y, and ¥,
correspond to the same energy E, then, even if < a | b > =0, the wave function
Y, cos a + Yy sin a will bean eigenfunction of the Hamiltonian for all &, and will not be
orthogonal to Y, or Y. This might appear to imply an infinite number of eigenfunc-
tions corresponding to an infinite number of values for @. In fact, this is not the case
and we require of all eigenfunctions that they are orthogonal to all other eigenfunc-
tions, and we shall assume that all eigenfunctions have been orthogonalised.

A set of eigenfunctions which are orthogonal to each other, and are normalised are
said to be orthonormal. This relationship may be summarised as

<O(ﬂ’)’ ..... | @D e s >=60{1165b6’)’(‘""' (lll)

where §;; is the Kronecker delta symbol such that 6;; =0 unless i =/, when 6,;=6;; = 1.
All wave functions we discuss will be assumed to be orthonormal.

We have now discussed the general properties of our wave functions — their ortho-
normality and degeneracy, and such remarks apply to all wave functions, although the
form of the solutions will be very different, and the degeneracy is usually much lower
than that of the hydrogen atom. We now turn to the actual solutions Y (r, 6, ¢). It
will be recalled that the wave function could be separated into the product of a radial
function of r only, and an angular function of § and ¢ only. We will discuss these two
parts separately. Good discussions and diagrams are given in many physical and theore-
tical chemistry texts? — we discuss here only the fundamentals.

(i) The radial function R (r). We may notice immediately that, since the functions
Y;,(0, ¢), Y, (0, ¢) are orthogonal only if /# [, m #m’, then for orthogonality, we
require that the functions R, (r), R,,-; (r) should be orthogonal for n #n’. The general
form of R,;(r) for a series of n, / is shown in Fig. 1.1, together with the function
R2,; (1) - 4 m 12, the total electron density at a distance r from the nucleus. It will be
seen that there are points where the wave function changes sign; these points are known
as nodes, and, for the radial function R (r) form spheres.3 A function R,,;(r) will have
(n—1—-1) nodes. We label radial wave functions by the convenient (if not logical) no-
tation in which the / value is represented by the letterss, p,d, f, g,....as [=0, 1, 2, 3,
4, ... The radial function for n =4,/ = 3 is thus labelled 4f, for n = 2,/ = Qitislabelled
2s. There are three general features to note about the radial function:

2 E.g. Atkins; Coulson; Murrell, Kettle, and Tedder (see Bibliography, page 37).
3 Note that the electron has zero probability density at a node.
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Fig. 1.1. The forms of the radial function Ry (r) and radial distribution function 41 rzR,,I (r) for
various nl values of the hydrogen atom

a) As the value of » increases, the electron density moves away from the nucleus. This
corresponds to a higher potential energy, and consequently a higher total energy (to
be expected from the variation of £ with n).

b) As the value of n increases, the wave function becomes more spread out for a given
value of /. Thus the 6p radial function will have 6-1—1 = 4 nodes, five regions of

non-zero electron density, the smallest closest to the nucleus, the largest furthest
away from the nucleus.

c) All the radial functions have a vanishing electron density at the nucleus, with the
exception of s-type functions (/ = 0).

(ii) The angular function Y, (0, ¢). The angular functions Y7, (0, ¢) are a class of
functions well known in mathematics: the spherical harmonics. They have the partic-
ular property that the wave function f (r) - Yy, (6, ¢) will be an eigenfunction of cer-
tain angular momentum operators. The two angular momentum operators 7 2 (giving
the square of the total electronic angular momentum) and .4, (giving the value of the
component of the angular momentum along one axis, arbitrarily denoted as the z axis)
both commute with the Hamiltonian operator. This means that the eigenfunctions of
Aare also eigenfunctions of /2 and ¥, however, unlike the Hamiltonian operator,



