RENDICONTI DELLA SCUOLA INTERNAZIONALE DI FISICA «ENRICO FERMI»

LXXVII Corso

Struttura nucleare e collisioni di ioni pesanti

SOCIETÀ ITALIANA DI FISICA BOLDGNA - ITALY

8083394

ITALIAN PHYSICAL SOCIETY

04-53 P578.2

PROCEEDINGS

OF THE

INTERNATIONAL SCHOOL OF PHYSICS
« ENRICO FERMI »

Course LXXVII

edited by R. A. BROGLIA and R. A. RICCI Directors of the Course and C. H. DASSO Scientific Secretary

VARENNA ON LAKE COMO VILLA MONASTERO

9th-21st JULY 1979

Nuclear Structure and Heavy-Ion Collisions

1981

Copyright © 1981, by Società Italiana di Fisica

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

Publishers:

NORTH-HOLLAND PUBLISHING COMPANY AMSTERDAM - NEW YORK - OXFORD

Sole distributors for the U.S.A. and Canada:

ELSEVIER NORTH-HOLLAND, INC.
52 VANDERBILT AVENUE, NEW YORK, N.Y. 10017

Technical Editor P. PAPALI

Proprietà Letteraria Riservata
Printed in Italy

ACERROF

SOCIETA' ITALIANA DI FISICA

RENDICONTI

DELLA

SCUOLA INTERNAZIONALE DI FISICA «ENRICO FERMI»

LXXVII Corso

e R. A. RICCI
Direttori del Corso

e di C. H. DASSO Segretario Scientifico

VARENNA SUL LAGO DI COMO VILLA MONASTERO

9-21 Luglio 1979

Struttura nucleare e collisioni di ioni pesanti

1981

SOCIETÀ ITALIANA DI FISICA BOLOGNA - ITALY

Preface.

During the last forty years a major research effort has gone into the study of nuclei by means of probes which excite only few degrees of freedom mainly by the bombardment with light ions. The specificity of the probes allowed the identification of a rich variety of elementary modes of nuclear excitation. These investigations have led to a detailed picture of nuclei close to their ground state (*).

A special feature of the nuclear system is that the field in which neutrons and protons move in the nucleus is generated by the nucleons themselves. The nucleus thus displays both the degrees of freedom associated with the single-particle motion and the collective degrees of freedom of a droplet of quantum liquid.

When two such quantal systems interact in a heavy-ion collision one is, in many aspects, entering a new field of physics. Collisions that bring the two nuclei in close contact lead to a combined nuclear-matter system under extreme conditions which have not yet been explored. It is a major challenge to extract the nuclear-structure information contained in these reactions. During the last years different models have been proposed to meet this challenge. They are based on either the concept of the average nuclear field (Koonin, RANDRUP, NEGELE, BROGLIA, DASSO and WINTHER), or on statistical concepts (Weidenmüller and Wolschin). These two extreme pictures can expect to account for some of the features of the processes they try to describe, and a consistent model must necessarily contain ingredients from both. For example, descriptions based on the mean-field approximation have to be supplemented by collision terms, damping widths of giant reasonances, etc., while the need to include collective variables in the statistical approach has long been recognized. Nonetheless, a consistent description of the interweaving of statistical and memory-conserving processes characteristic of heavy-ion reactions at low energies is still lacking.

At the basis of the different microscopic models we find the statistical shell

^(*) Cf., e.g., the Proceedings of the International School of Physics «Enrico Fermi» on «Elementary Modes of Excitation in Nuclei», edited by A. Bohr and R. A. Broglia (Amsterdam, 1977).

model description of the nucleus and the nuclear-response theory. This was the subject of several contributions.

The experimental situation was reviewed by Gobbi, Lefort and Moretto. Of the different observables, the angular momentum absorbed by the two interacting nuclei in a heavy-ion reaction seems to provide a delicate test for the different models. This area of research was covered extensively by Specht, Stephens and De Boer.

In his lectures, Schiffer brought our attention to the mass and shell structure dependence of the fusion cross-sections and discussed some of the consequences this dependence may have for the imaginary heavy-ion potential.

The mutual relation between the different models and their ability to account for the observed data was the subject of the lectures of Bertsch.

As expected from a school covering a rapidly developing field, there were no final answers to many of the questions raised during the two weeks. We are still far from being able to use heavy-ion reactions to obtain detailed nuclear-structure information. The material presented in these proceedings shows, however, that considerable progress has been made towards this end.

On behalf of all the participants of the Course we would like to thank the Italian Physical Society for providing the grants for this Course as well as for making available the inspiring facilities of Villa Monastero at Lake Como. The advice and help of Dr. P. F. Bortignon at different stages of the organization of the school is gratefully acknowledged. The assistance of the secretarial staff headed by G. Wolzak played a central role in making the stay at Varenna a most enjoyable experience.

R. A. Broglia, C. H. Dasso and R. A. Ricci

PROCEEDINGS OF THE INTERNATIONAL SCHOOL OF PHYSICS « ENRICO FERMI »

Course I

Questioni relative alla rivelazione delle
particelle elementari, con particolare
riguardo alla radiazione cosmica
edited by G. Puppi

Course II

Questioni relative alla rivelazione delle
particelle elementari, e alle loro interazioni con particolare riguardo alle
particelle artificialmente prodotte ed
accelerate
edited by G. Puppi

Course III

Questioni di struttura nucleare e dei
processi nucleari alle basse energie
edited by G. SALVETTI

Course IV

Proprietà magnetiche della materia
edited by L. GIULOTTO

Course V
Fisica dello stato solido
edited by F. Fumi

Course VI

Fisica del plasma e applicazioni astrofisiche
edited by G. RIGHINI

Course VII

Teoria della informazione
edited by E. R. CAIANIELLO

Course VIII

Problemi matematici della teoria
quantistica delle particelle e dei campi
edited by A. Borsellino

Course IX
Fisica dei pioni
edited by B. Touschek

Course X

Thermodynamics of Irreversible Processes
edited by S. R. DE GROOT

Course XI

Weak Interactions
edited by L. A. RADICATI

Course XII
Solar Radioastronomy
edited by G. RIGHINI

Course XIII

Physics of Plasma: Experiments and
Techniques
edited by H. Alfvén

Course XIV

Ergodic Theories

edited by P. CALDIROLA

Course XV
Nuclear Spectroscopy
edited by G. RACAH

Course XVI

Physicomathematical Aspects of Biology
edited by N. RASHEVSKY

Course XVII

Topics of Radiofrequency Spectroscopy
edited by A. Gozzini

Course XVIII

Physics of Solids (Radiation Damage in Solids)
edited by D. S. BILLINGTON

Course XIX
Cosmic Rays, Solar Particles and
Space Research
edited by B. Peters

Course XX

Evidence for Gravitational Theories
edited by C. Møller

Course XXI

Liquid Helium

edited by G. CARERI

Course XXII

Semiconductors
edited by R. A. SMITH

Course XXIII

Nuclear Physics
edited by V. F. Weisskopf

Course XXIV

Space Exploration and the Solar System
edited by B. Rossi

Course XXV

Advanced Plasma Theory
edited by M. N. ROSENBLUTH

Course XXVI
Selected Topics on Elementary Particle Physics
edited by M. Conversi

Course XXVII

Dispersion and Absorption of Sound
by Molecular Processes
edited by D. Sette

Course XXVIII

Star Evolution
edited by L. Gratton

Course XXIX

Dispersion Relations and Their Connection with Causality
edited by E. P. WIGNER

Course XXX

Radiation Dosimetry
edited by F. W. Spiers and G. W.
REED

Course XXXI

Quantum Electronics and Coherent
Light
edited by C. H. Townes and P. A.
MILES

Course XXXII

Weak Interactions and High-Energy

Neutrino Physics

edited by T. D. Lee

Course XXXIII

Strong Interactions
edited by L. W. ALVAREZ

Course XXXIV

The Optical Properties of Solids
edited by J. TAUC

Course XXXV

High-Energy Astrophysics
edited by L. Gratton

Course XXXVI

Many-Body Description of Nuclear

Structure and Reactions

edited by C. Bloch

Course XXXVII

Theory of Magnetism in Transition

Metals

edited by W. Marshall

Course XXXVIII

Interaction of High-Energy Particles
with Nuclei
edited by T. E. O. ERICSON

Course XXXIX

Plasma Astrophysics
edited by P. A. STURROCK

Course XL
Nuclear Structure and Nuclear Reactions
edited by M. Jean

Course XLI
Selected Topics in Particle Physics
edited by J. STEINBERGER

Course XLII

Quantum Optics
edited by R. J. GLAUBER

Course XLIII

Processing of Optical Data by Organisms and by Machines
edited by W. Reichardt

Course XLIV

Molecular Beams and Reaction Kinetics
edited by Ch. Schlier

Course XLV

Local Quantum Theory
edited by R. Jost

Course XLVI

Physics with Storage Rings
edited by B. TOUSCHEK

Course XLVII

General Relativity and Cosmology
edited by R. K. Sachs

Course XLVIII

Physics of High Energy Density
edited by P. CALDIROLA and H.
KNOEPFEL

Course IL Foundations of Quantum Mechanics edited by B. D'ESPAGNAT

Course L

Mantle and Core in Planetary Physics
edited by J. COULOMB and M. CAPUTO

Course LI
Critical Phenomena
edited by M. S. GREEN

Course LII

Atomic Structure and Properties of
Solids
edited by E. Burstein

- Course LIII

 Developments and Borderlines of

 Nuclear Physics

 edited by H. Morinaga
- Course LIV

 Developments in High-Energy Physics
 edited by R. R. GATTO
- Course LV

 Lattice Dynamics and Intermolecular
 Forces
 edited by S. Califano
- Course LVI

 Experimental Gravitation
 edited by B. BERTOTTI
- Course LVII

 Topics in the History of 20th Century
 Physics
 edited by C. Weiner
- Course LVIII **Dynamic Aspects of Surface Physics**edited by F. O. GOODMAN
- Course LIX

 Local Properties at Phase Transitions
 edited by K. A. MÜLLER
- Course LX

 C*-Algebras and their Applications to

 Statistical Mechanics and Quantum

 Field Theory

 edited by D. KASTLER
- Course LXI

 Atomic Structure and Mechanical

 Properties of Metals

 edited by G. CAGLIOTI
- Course LXII

 Nuclear Spectroscopy and Nuclear

 Reactions with Heavy Ions

 edited by H. Faraggi and R. A. Ricci
- Course LXIII

 New Directions in Physical Acoustics edited by D. Sette
- Course LXIV

 Nonlinear Spectroscopy
 edited by N. Bloembergen

- Course LXV

 Physics and Astrophysics of Neutron
 Stars and Black Holes
 edited by R. GIACCONI and R. RUFFINI
- Course LXVI

 Health and Medical Physics
 edited by J. BAARLI
- Course LXVII

 Isolated Gravitating Systems in General Relativity
 edited by J. EHLERS
- Course LXVIII

 Metrology and Fundamental Constants
 edited by A. Ferro Milone, P. Giacomo and S. Leschiutta
- Course LXIX

 Elementary Modes of Excitation in

 Nuclei

 edited by A. Bohr and R. A. Broglia
- Course LXX

 Physics of Magnetic Garnets
 edited by A. PAOLETTI
- Course LXXI
 Weak Interactions
 edited by M. BALDO CEOLIN
- Course LXXII

 Problems in the Foundations of
 Physics
 edited by G. Toraldo di Francia
- Course LXXIII

 Early Solar System Processes
 and the Present Solar System
 edited by D. LAL
- Course LXXIV

 Development of High-Power Lasers
 and their Applications
 edited by C. Pellegrini
- Course LXXV
 Intermolecular Spectroscopy and Dynamical Properties of Dense Systems edited by J. VAN KRANENDONK
- Course LXXVI

 Medical Physics
 edited by J. R. GREENING

8063394

INDICE

R.	A.	Broglia, C. H. Dasso and R. A. Ricci - Preface.	pag.	xv
Α.		OBBI, U. LYNEN, A. OLMI, G. RUDOLF and H. SANN -		
	Th	e Kr+Er collision.		
	1.	Introduction	pag.	1
	2.	Experimental methods	>>	3
	3.	General characteristics	*	7
		3'1. Trajectories	»	10
		3.2. Positive and negative scattering angles	*	11
		3.3. Element distributions	»	13
		3.4. Mass equilibrium after capture	*	23
		The dissipation of angular momentum	*	27
	5.	Search for pre-equilibrium decay of the fragments	»	31
		5.1. Neutron multiplicity	»	32
		5'2. Projectile splitting at 12.1 MeV/u	*	35
	6.	Conclusions	*	37
		e y		
L.	G.	MORETTO - Experimental evidence for collective and		
	the	ermal features in heavy-ion reactions.		
	1.	Introduction	»	41
	2.	An open list of «relevant» degrees of freedom	»	42
	3.	Characterization of the dynamical regimes	»	43
	4.	Damping of the relative motion and the energy thermalization	<i>"</i>	44
	5.	The neutron-to-proton ratio and the giant isovector resonances	»	51
	6.	The mass asymmetry mode and the charge or mass distributions	<i>»</i>	56
	υ.	61. The deep inelastic component	<i>"</i>	56
		62. The fusion-fission component	<i>"</i>	62
		V 21 220 ZGNZOZZ ZZNNZOZZ COZZZPOZZOZZ T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-

	7.	The relaxation of the rotational degrees of freedom 7'1. The equilibrium limit	pag. »	66 66 67
		metry	*	69
		multiplicities upon mass asymmetry and Q value 7.5. The second moments of the γ -ray multiplicities and	» »	69 77
		their sources	<i>»</i>	80
L.	mo	Moretto – Equilibrium statistical treatment of angular omenta associated with collective modes in fission and avy-ion reactions.		
	In	troduction	*	85
		co-ordinate in compound-nucleus fission and in fusion-fission Statistical coupling between orbital and intrinsic angular	*	86
		momenta and wriggling modes	*	93
	4.	on the disintegration axis: tilting	*	98
		momentum system	>>	101
	5.	Coupling of twisting and bending modes to rigid rotation	>>	102
		A simple application to a typical heavy-ion reaction	>>	105
	7.	Conclusion	*	108
М.		EFORT - Charge-to-mass ratio and distribution of energy nongst the two fragments in dissipative collisions between	*	
		avy ions.	*	111
	1.	Experimental aspects of the study of the N/Z ratio. First evidence for a fast charge equilibrium in the composite system	» »	112
	2	Study of the charge width for fragments of fixed mass	>>	120
	۵.	2'1. Potential energy of the charge equilibration mode	»	120
		2'2. Width of the charge distribution	»	123
	3.	The neutron excess collective degree and the dipole-giant-resonance excitation as a dissipative process	**	135
	4.	The kinetic-energy loss during the first stage of the collision due to the neutron excess equilibration	*	136
	5.	Degree of thermalization of the dissipated energy. Sharing of excitation energy between the fragments	*	140

Н.	-J.	Specht – Fission phenomena in deep inelastic collisions.	
	1	Introduction pag.	150
	2.	Experimental procedure	151
	<i>∠</i> . 3.		153
	ο.		153
		3.1. The evidence for a sequential process	155
		3.3. Angular-momentum orientation	168
		3'4. Nuclei with $Z > 100 \dots \dots \dots $	175
	4.	Conclusions	182
F.	s.	Stephens - Gamma-rays from deep inelastic collisions.	
	1.	Introduction	185
	2.	The gamma-rays from DIC	185
	3.	Information content of γ -ray spectra	188
	4.	Gamma-rays from DIC	189
		4'1. Multiplicities	189
		4'2. Angular distributions »	198
	5.	Conclusion	203
J.	Р.	Schiffer - Nuclear structure and heavy-ion reactions.	
	1.		205
		io della del	205
	3.	Heavy-ion reactions	209
s.	E.	Koonin – One-body nuclear dynamics.	
	1.	Introduction	233
	$\frac{1}{2}$.		233
	3.	The wall formula»	235
	4.	Classical linear response theory	238
	5.	Application to a slab of nuclear matter »	242
	6.	Quantal linear response theory	245
	7.	Application to a spherical nucleus	247
	8.	Application to heavy-ion collisions	252
	9.	Relation to TDHF calculations	253
	10	.Summary	259
J.		ANDRUP - Multiple nucleon transfer in damped nuclear llisions.	
	1	Introduction	261
		The model	262

VIII

A 111			
	3.	Nearly degenerate limit page	g. 264
	4.	The dinucleus	200
	5.	***************************************	
	6.	Concluding remarks	270
	0.		
		1 1 1 modboda	
J.		. Negele - Introduction to functional integral methods	
	for	r nuclear dynamics.	
		T-1-1-1-1-1-1	272
	1.	Introduction	
	2.	Functional integral representation of the evolution operation	276
		7 The Hillipard-Stratthout vicin transformation	0.50
		2. The stationary-phase approximation	201
	3.	The approximation of quantum eigenstates	20.1
		3.1. The Fourier transform of the trace of the evolution	
		operator	> 282 > 282
		3 2. Evaluation of the trace	000
		3.3. Time-independent solutions	0.00
		34. The Hartree-Fock approximation	292296
		3.5. The loop expansion	303
		3 6. Time-dependent solutions	
	4.	Tunneling	» 311
		4'1. Complex time	» 312
		4.2. The bounce	» 315
	5.	Summary and conclusions	» 323
		G II Disco and A WINTHER - Coherent	
\mathbf{R}	. A	. Broglia, C. H. Dasso and A. Winther - Coherent	
	SU	urface excitation model of heavy-ion reactions.	
			» 327
	1.	The ingredients	» 329
	2.	The degrees of freedom	» 336
	3.	I i I time of motion	» 341
	4.	at a distribution of the magnetic	» 347
	5.	- I descriptions	» 351
	6.		» 362
	7	. Applications	
T	T A	A. WEIDENMÜLLER – Transport theory of heavy-ion col-	
		isions.	
	11	1810118.	
	1	. Introduction	» 384
	-	Collective and intrinsic degrees of freedom. Statistical as-	
	4	gumptions	» 384
	3	One-dimensional model. Statistical assumptions	» 386
		C 1 1 1 1 of a roma con	» 388
	5	Evaluation of the optical-model Green's function	» 390

	7	Derivation of the transport equation. Discussion pag. The weak-coupling approximation: transport coefficients » The strong-coupling approximation: a modified Fokker-	393 396
	0.	Planck equation with new transport coefficients »	398
	9.	Summary	402
G.	BE	ERTSCH - Theories of heavy-ion collisions.	
	1.	Introduction	404
	2.	Fusion	406
	3.	Angular distributions	408
	4.	Energy loss »	410
	5.	Dispersions in energy and angle	411
	6.	Fragment mass distributions	414
	7.	Angular-momentum transfer »	414
	8.	Massive transfer	416
	9.	Conclusion	416
A.		CJEUNE and C. MAHAUX – Single-particle field in nuclear atter.	
	1.	Introduction »	418
	2.		419
	40	2'1. Definitions	419
		2'2. Approximation schemes	422
		2.3. Effective masses	424
			426
	3.	Nonlocality of the field	
	4.	Energy dependence of the field »	426
	5.	Effective mass	428
	6.	Physical consequences	430
	•	6'1. Single-particle energies »	430
		6'2. Root-mean-square radius of valence orbits »	432
		6'3. Energies of giant resonances »	433
		6'4. Discussion	433
	_	Imaginary part of the field »	434
			435
	8.	Conclusions	100
V.	B	ERNARD and NGUYEN VAN GIAI – Single-particle and ellective nuclear states in the Green's function method.	
	1	Introduction	437
		Self-consistent RPA calculations in co-ordinate space »	438
	2.		438
		2'1. The method	440
		Z Z. Transition densities and stronger	442
		2'3. Results for ²⁰⁸ Pb	114

	3.	Effects of the single particle-collective modes coupling on		
		the single-particle properties	pag.	447
		3.1. Calculation of the mass operator	>>	447
		3'2. Single-particle spectrum and effective mass	»	449
		3'3. Results for 208Pb	>>	451
		3'4. Concluding remarks	>>	453
Ρ.	F.	Bortignon - Strength function for single-particle states		
	an.	d for giant resonances		455
	COLL	a 101 gillio 1030itatioos	>>	455
W	Т.	Alberico – A study of the ground-state properties and		
	of	the excitation spectrum of the infinite nuclear matter.		
	OI	one excitation spectrum of the immite nuclear matter.		
	1.	Introduction	»	463
	2.	Outlines of the formalism	>>	464
	3.	Ground-state properties in the HF theory	»	465
	4.	Linear response of the infinite nuclear matter	»	468
		4'1. Single-particle excitations in the HF theory	»	469
		4'2. Collective response of the infinite nuclear matter	<i>"</i>	471
		Ground-state properties in the G-matrix theory		
	6	Single-particle excitations in the BHF theory	»	473
	0.	onigie-particle excitations in the BHF theory	»	474
J.	$\mathbf{R}\mathbf{A}$	NDRUP - Nuclear proximity forces.		
	1.	Introduction	»	478
		General treatment		
		2'1. Gap with gently paraboloidal width		479
		2'2. Other gap or crevice geometries		480 483
	0. 1	Specialization to nuclei	>>	485
$\mathbf{R}.$	ÖM	ÜR AKYÜZ and AA. WINTHER – Nuclear surface-surface		
	inte	eraction in the folding model.		
	9 7	Introduction		
	1. J	Introduction		492
	2. « 3.]	Realistic » densities		492
	4. 8	Surface-surface interaction		$\frac{496}{498}$
	5. 1	Discussion		198 502
	App	endix A		504

G.	W	OLSCHIN - Approaching equilibrium in heavy-ion collisions.		
	1	Introduction	oag.	508
	2.	Relative motion in a statistical treatment	»	512
	4.	2'1. Time scales	»	513
		2'2. Fokker-Planck equation	**	516
	3.	Classical model for the relative motion	»	521
		3.1. Deflection function	*	521
		3.2. Mean interaction time	>>	525
	4.	Nucleon transport)	528
		4'1. Mass and element distributions	» »	531 535
	5.	Shape relaxation)	538
	6.		*	545
	7.	Multidifferential cross-sections	>>	549
	8.	Structure effects	>>	554
		8'1. Nonlinear system	»	556
		8.2. Phase-transition analogy?	>>	562
	9.	Conclusions	*	566
	1. 2. 3. 4. 5. 6. 7. A	Dynamical approximation	» » » » » »	572 572 576 577 579 581 584 586
G	. P	ppendix C Classical energy loss distribution		
	$\frac{1}{2}$.	Uncertainties in the standard analysis of the data in the	» »	592 594
	3.	region of the giant resonances	<i>"</i>	596

Μ.	. Baldo and O. Civitarese – Evaporation processes in heavy- ion collisions.	. 11
	1. Introduction	
	3. The computational method	
	4. Evaporation process measurements	000
	4.1. Mass and charge distributions of the residues »	000
	4'2. Light-particle spectra and multiplicities »	011
	4'3. Particle angular distributions and correlations »	04.0
	4'4. Angular distributions of the residues »	04 =
F.	E. Bertrand – Giant multipole resonances. An experimental review	620
J.	DE BOER, W. DÜNNWEBER, G. GRAW, W. HERING, C. LAUTERBACH, H. PUCHTA, CH. SCHANDERA, W. TRAUTMANN and U. LYNEN – Deep inelastic reactions and gamma-ray circular polarization.	
	1. Motivation	655
	2. Deep inelastic reactions	657
	2'1. Range of energies and scattering angles »	657
	2'2. Wilczyński plots	658
	2'3. Angular momenta »	659
	2.4. Gamma-decay	660
	3. Apparatus	663
	3'1. Targets and chamber	663
	3'2. Particle detectors	663
	3'3. Polarimeters	663
	3'4. Electronics	666
		666
	4. Results	668
	4.1. Particle spectra and circular polarization»	668
	4'2. List of parameters and averaged results »	670
	4'3. Interpretation	$672 \\ 674$
	5. Summary	676
м.	Dakowski – Influence of the shell structure of the colliding nuclei on the energy and charge distributions in dissipative collisions.	677