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Preface

Daily living entails a risk of injury from occupational tasks, from car crashes,
and from taking part in sport. The study of human body dynamics reveals the
mechanisms of injuries sustained in these situations and the measures that can
be taken to avoid them. Moreover, in the area of athletics and sport, human
body dynamics also plays an active part in the analysis of factors that
contribute to the athlete’s performance, and in the design of protective
clothing and equipment. This book brings together the analyses of various
types of human body dynamics involved in impact situations, occupational
tasks, and athletics and sporting events, by invoking the disciplines of
engineering mechanics, analytical mechanics, dynamics of structures,
vibration, and impact mechanics.

The book is divided into three sections: impact; occupational tasks and
environment; and athletics and sport. The first section deals with theoretical
models of head, thorax, and spinal injury, to elucidate the mechanisms of
injury and describe appropriate restraint and protective systems, as well as
vehicle design for crashworthiness, The second section presents computerized
human body models first to determine the relationships between applied forces
and resulting displacements in simulated jumping, work motions in space, and
response to impulsive forces; secondly to analyse slow moves in the handling of
heavy materials in order to understand the mechanism of low-back injury and
how it can best be prevented; and thirdly to determine maximal levels for load-
lifting, pushing, and pulling. Experimental studies of the response of the body to
vibrations from industrial machinery and vehicles are also described,
together with suggestions for improving the design of, among other things,
hand-held power tools, tractor suspension systems, and the interiors of
ambulances. The last section deals with athletics and sport. Theoretical
mechanics models are developed for the following: (i) to study impulse and
momentum considerations in kicking and heading a soccer ball, and kinetic-
to-potential energy conversion in maximizing pole-vaulting height; (ii) to
analyse discus throw, javelin throw, and shot put, in order to demonstrate the
influence on performance of disc spin—speed and moment of inertia, javelin
inclination and throw angle and geometry, and the shot angle; (iii) to help in
the design of hockey heimets, sticks, and jogging shoes; (iv) to describe the
mechanics of the impact of golf-club head and ball, to maximize the velocity
imparted to a golfball; (v) to calculate energy balance in assessing rope
strength when arresting the fall of rock-climbers; and (vi) to estimate the
energy of karate blows and kicks, for fracture of mediums.
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The book is designed as a biomechanics course text as well as a reference
source in body dynamics of impact, occupational manoeuvres, and athletics,
for physicians, bioengineers, and physical educators. The text employs
mechanics rigor at the requisite level for elucidating the mechanisms and
applications, and also emphasizes the results of the analyses in setting out the
causes of injury, design considerations for protective measures and devices,
and factors for maximizing performance in sport and athletics.

I wish to thank the contributing authors for their painstaking efforts and
Professor Collins for his editorial assistance.

September 1981 DNG
Hamilton, Ontario
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1 e Head injury mechanisms—
characterizations and
clinical evaluation

SunNDerR H. Apvani, AyuB K. OMMAYA, AND WEN-JEI YANG

1.1. Introduction

Head injury poses a grave health problem. The National Safety Council of the
United States estimates that 6 per cent of all accidents involve the head but this
figure is as high as 67 per cent in automobile accidents. In the United States
such accidents cause about three million head injuries annually; 50 000 of these
are fatal. The head injury literature is vast and varied since several disciplines
are involved. These include neurophysiology, neurosurgery, neuropathology,
kinesiology, engineering mechanics and computer modelling. With the
objective of bringing these fields into an interdisciplinary focus, the 1966 Head
Injury Conference Proceedings { 1] represent a milestone in terms of discipline
cross-fertilization. This chapter essentially presents subsequent work which
has emerged from this vantage point and is oriented towards the biomechanics
of head injury stemming from a mechanical impact environment. Related
work can also be found in a comprehensive review by Goldsmith [2] and
studies by McElhaney, Stalnaker, and Roberts [3].

In order to understand the head injury mechanisms it is necessary that the
mechanical input be related to the resultant pathophysiological responses.
Dynamic loading to the head can generally be classified in two categories:

(1) Direct contact between the head and colliding object. In an automotive
crash environment the head may impact the windscreen, dashboard,
airbag, side door, head rest, etc.

(i) Inertial impactsuch as loading transmitted to the head by torso motion via
the head—neck junction.

Figure 1.1 presents an overview of the possible head injury loadings,
mechanisms, and resulting clinical and pathological responses. A fundamental
but controversial query still exists regarding the delineation of the trans-
lational and rotational components of the head centre of gravity acceleration
vector and their relative contributions to head injury in various impacts. It is
hoped that the following sections on anatomical, constitutive, modelling
(analytical and experimental), and pathophysiological considerations will
present the reader with a state-of-the-art appraisal. Selected literature is
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Fic. 1.1. Possible head injury loadings, mechanisms, and responses.

directly cited wherever possible. Additionally, pertinent references are listed
regularly by the National Institutes of Health, USA.

1.2. Anatomical considerations

A comprehensive anatomical description of the human head is not undertaken
here since several standard textbooks on human anatomy such as Gray [4] and
Woodburn [5] provide excellent qualitative descriptions and agree well.
Useful anatomical information can also be found in various atlases [6] and
specialized articles. Detailed measurements and landmark co-ordinates for a
typical 50th percentile human skull can be found in the work by Hubbard and
McLeod [7]. A brief anatomical summary pertinent to the biomechanics of
head impact is presented here.

The human head is a complex structural system which on a simplified basis is
composed of the scalp, the skull, the dura, the pia-arachnoid complex, the
brain, the blood vessels, and the cerebrospinal fluid. Considering the general
structure of the head with regard to the central nervous system (CNS) one is
impressed with the protective packaging. In general the CNS can be
considered as a viscoelastic mass hydraulically shock mounted in a stiff
container with external shock-attenuating layers. The external protective
layer, or scalp, is composed of integument, subcutaneous fat, superficial facia,
galea aponeurotica, and pericranium. Compared with other body skin the
scalp is relatively thick, especially in the occipital region. The scalp is also richly
supplied with blood vessels which course over the entire cranial area. As a
composite tissue the scalp, along with variable quantities of hair, presents the
first line of defence from physical trauma.
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The eight bones comprising the skull are knit together in a structurally
sound design approximating a spherical shell. The composition of the cranial
bones is characterized by two lamellae or inner and outer tables between which
lies a bed of dipolic tissue. In certain portions of the bones, particularly at their
edges and junctures, the tables join internally into soild bone devoid of diplo€.
The sutures joining the cranial bones of an adult are comparatively strong in
compression loading, although, depending on the variables of force appli-
cation effecting the trauma, they may shear prior to or along with bone
fracture.

The meninges impose the next and last barrier to access to the brain. The
outermost membrane, the dura mater, offers the most significant structural
protection of the three meninges. The disposition of the dura mater varies over
the entire surface of the brain (and spinal cord). Elements of this tissue
elaborate to form the falx and tentorium partitions among others. On the
cranial surface the dura mater is a tough elastic tissue tightly connected to the
internal surfaces of the cranial bones. In contrast, the subdural surface is
relatively smooth and unattached, being equipped with a layer of mesothelium
lining. Communicating via the arachnoid and parallel with the dura mater is
the pia mater. This membrane, which is much finer than the dura, conforms to
the cortical folds and is invested with the vascular network supplying the
nervous tissue. Its strength is secondary to the transport of blood over the
surface of the brain. The last meningeal membrane is the arachnoid which lies
between and traverses the space between the dura mater and the pia mater. It is
a delicate avascular membrane of little structural value in itself. Between the
arachnoid and the pia mater lies the subarachnoid space filled with cerebro-
spinal fluid.

The brain is a soft structure composed of nerve cells, the grey matter, and
their axons, the white matter, both of which are supported by the glia, all of
these being derived from the ectoderm. It consists of two cerebral hemispheres,
the basal ganglia, the cerebellum, and the brain stem. The cerebral hemispheres
are divided into the frontal, temporal, parietal, and occipital lobes. Inside the
brain are cavities, called ventricles, containing cerebrospinal fluid. The
ventricles are in continuity with each other, either directly or indirectly, and the
fourth ventricle empties into the cisterns at the base of the brain. The basal
cisterns are in continuity with the subarachnoid spaces within the spinal canal
and over the surface of the brain. The cerebrospinal fluid is largely secreted
within the ventricles and is largely absorbed over the surface of the cerebral
hemispheres.

1.3. Constitutive considerations

The mechanical properties of the tissues of the head have been extensively
investigated [8]. In particular, considerable effort has been devoted to the
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characterization of the constitutive properties of human skull and brain tissue
because of their relative importance.

Average values of the skull elastic moduli E and the ultimate strength o,
adapted from ref. 8 are presented in Table 1.1. The scatter in the data, although
not reported here, is wide in range and typical for such tests. The variability of
the data compared with that in literature is evident. For example, Wood [ 10]
has reported an average tensile strength of 10000 1bf in~ 2 at a strain rate of
0.01 s~ '. It is noteworthy, however, that the values in Table 1.1 represent
lumped material properties of the structure in view of the skull compact
bone—diploé sandwich configuration. Typical average compression curves for
skull specimens (biopsy, autopsy, frozen and embalmed) tested in the
compressive and tangential modes are illustrated in Fig. 1.2. Flexure character-
istics of layered cranial bone have been reported by Hubbard, Melvin, and
Barodawala [11].

TasLE 1.1
Average static mechanical properties of skull bones

SAMPLE SOURCE

Frozen
Biopsy biopsy Autopsy Embalmed
E (radial compression) (Ibf in™?) 523x10* 2299x10* 11.84x10* 38.10x10*

E (tangential compression (Ibf in~?}  59.40 x 10* 62.6 x10* 378 x10* 80.8 x10*
E (tangential tension) (Ibf in~2) - - - 127 x10*
¢ (ultimate radial

compression) (Ibfin~2) - 211 x10° 1421 x10° 139 x10°
a (ultimate tangential

compression) (Ibf in~?) 11.87x 10>  11.81 x 10? 7.34x10°  13.12x10°
o (ultimate tangential

tension) (Ibfin~2) - ~ - 6.3 x10%

2 Value adapted from McElhaney et al.[9].

The rheological response of human brain tissue in pure shear has been
reported by Shuck and Advani [12]. Mechanical shear strain failure levels
of 0.035 rad have been identified at 10 Hz from dynamic torsion tests. Visco-
elastic models characterizing brain tissue properties in the frequency range
3-350 Hz have also been formulated. A plot of the experimental storage G, and
the loss modulus G, for human brain tissue in the yielded and unyielded states
is illustrated in Fig. 1.3. Free-standing dynamic compression tests on brain
tissue have been conducted by Estes and McElhaney [ 13]. The instanianeous
dynamic elastic modulus at high strain rates is about 10 Ibf in~ 2. Creep and
relaxation tests on brain tissue have been reported by Galford and McElhaney
[14]. Compressibility and ultrasonic tests indicate that the bulk modulus of
brain tissue is constant (305000 Ibf in~ ?) over a wide frequency range [§8].
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