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PREFACE

Compliant mechanisms offer great promise in providing new and better solutions to
many mechanical-design problems. Since much research in the theory of compliant
mechanisms has been done in the last few years, it is important that the abundant
information be presented to the engineering community in a concise, understand-
able, and useful form. The purpose of this book is to fulfill this need for students,
practicing engineers, and researchers.

The book presents methods for the analysis and design of compliant
mechanisms and illustrates them with examples. The materials in the book provide
ideas for engineers to employ the advantages of compliant mechanisms in ways that
otherwise may not be possible. The analysis of small deflection devices is
addressed, but emphasis is given to compliant mechanisms that undergo large,
nonlinear deflections. The pseudo-rigid-body model is introduced as a method
which simplifies the analysis of compliant mechanisms that undergo large
deflections by modeling them with elements common to traditional mechanisms.
This simplification makes it possible to design compliant mechanisms for many
types of tasks. The advantages of compliant mechanisms in the emerging area of
microelectromechanical systems (MEMS) are also addressed, and several MEMS
examples are provided throughout the book.

The chapters are organized to flow from simple to more complex concepts; the
book then concludes with the application of the previous materials to specific types
of devices. This is done by organizing the chapters into major sections of introduc-
tion, fundamentals, analysis, design, and special-purpose mechanisms. In a similar
way, simple examples facilitate understanding, followed by more complicated
examples that demonstrate how the material can be used in applications.
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Review of essential topics in strength of materials, machine design, and kine-
matics is provided to create a self-contained book that does not require a lot of addi-
tional references to solve compliant-mechanism problems. These reviews can help
emphasize important topics the reader has studied previously, or they can be used as
a resource for those from other disciplines who are working in the area of MEMS or
related areas. The appendixes provide a resource for quick reference to important
equations presented in the book.

The area of compliant mechanisms exists thanks to the vision and insight of
Professor Ashok Midha, Many have contributed to the knowledge of compliant
mechanisms, but Professor Midha may be considered the father of modern compli-
ant mechanisms. His insight and vision have had a profound effect on the tield and
on those with whom he has associated. I have greatly benefited from both his work
in compliant mechanisms and his example and mentorship, and 1 am grateful for his
influence.

The earlier versions of this book were used as notes in compliant mechanisms
courses offered at Brigham Young University, Purdue University, and the University
of Missouri, Rolla. Students made many helpful comments to improve the quality
of the notes.

Several colleagues have graciously volunteered their time and expertise by con-
tributing parts of the book. Professor G. K. Ananthasuresh at the University of
Pennsylvania and Professor Mary 1. Frecker at Pennsylvania State University wrote
Chapter 9. Dr. Morgan D. Murphy of Delphi Automotive Systems contributed
Appendix G. Chapter |1 relies heavily on graduate work completed by Brian
Jensen when he was at Brigham Young University.

Some of the text and figures in this book are summarized from previous writ-
ings, including a number of papers coauthored with graduate students and col-
leagues and published by the American Society of Mechanical Engineers (ASME)
in various conference proceedings and in the Journal of Mechanical Design. Work
from a number of graduate student theses has also been included. Grateful thanks is
extended to all those who have participated in this work: Jamies Derderian, Patrick
Opdahl, Brian Edwards, John Parise, and Brian Jensen have generously contributed
sections of this book. The contributions of Scott Lyon, Brent Weight, and Greg
Roach are also greatly appreciated, as are the efforts of many other students that
have made this possible. The valuable assistance of Megan Poppitz is also grate-
fully acknowledged.

The Mechanical Engineering Department at Brigham Young University has
been very supportive of this project and has provided many resources to assist in its
completion. The Coliege of Engineering and the administration of Brigham Young
University have also supported the author’s efforts in many ways.

In addition to the many students who have provided recommendations and
encouragement for this work, others are thanked for their helpful reviews and com-
ments to improve the manuscript. Special thanks to Professor G. K. Ananthasuresh,
Dr. Morgan D. Murphy, Professor Kenneth W. Chase, and Professor Don Norton of
Brigham Young University’s English Department, and the university editing service
for valuable reviews and comments on the manuscript.
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the National Science Foundation (NSF). The resources provided were a wise invest-
ment and will have a far-reaching impact for many years to come. The following
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DMI-9624574 (CAREER Award), CMS-9978737, ECS-9528238, and DMI-
9980835. The Utah Center of Excellence Program is also acknowledged for support
of commercialization of compliant mechanism theory through funding of the Cen-
ter of Excellence in Compliant Mechanisms.
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CHAPTER 1

INTRODUCTION

A mechanism is a mechanical device used to transfer or transform motion, force, or
energy |1, 2]. Traditional rigid-body mechanisms consist of rigid links connected at
movable joints; the section of a reciprocating engine shown in Figure 1.1a is an
example. The linear input is transformed to an output rotation, and the input force is
transformed to an output torque. As another example, consider the Vise Grip pliers
shown in Figure 1.1b. This mechanism transfers energy from the input to the out-
put. Since energy is conserved between the input and output (neglecting friction
losses), the output force may be much larger than the input force, but the output dis-
placement is much smaller than the input displacement. Like mechanisms, struc-
tures may also consist of rigid links connected at joints, but relative rigid-body
motion is not allowed between the links.

N

)

(a) (b)

Figure 1.1. Examples of rigid-link mechanisms: (a) part of a reciprocating engine, and (b)
Vise Grip.
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(a) (b)

Figure 1.2. Examples of compliant mechanisms: (a) crimping mechanism (from [3]), and (b)
parallel-guiding mechanism.

Hand grips

A compliant mechanism also transfers or transforms motion, force, or energy.
Unlike rigid-link mechanisms, however, compliant mechanisms gain at least some
of their mobility from the deflection of flexible members rather than from movable
joints only. An example of a compliant crimping mechanism is shown in Figure
1.2a. The input force is transferred to the output port, much like the Vise Grip, only
now some energy is stored in the form of strain energy in the flexible members.
Note that if the entire device were rigid, it would have no mobility and would there-
fore be a structure. Figure 1.2b shows a device that also requires compliant mem-
bers to focus a lens [4, 5].

1.1 ADVANTAGES OF COMPLIANT MECHANISMS

Compliant mechanisms may be considered for use in a particular application for a
variety of reasons. The advantages of compliant mechanisms are considered in two
categories: cost reduction (part-count reduction, reduced assembly time, and sim-
plified manufacturing processes) and increased performance (increased precision,
increased reliability, reduced wear, reduced weight, and reduced maintenance).

An advantage of compliant mechanisms is the potential for a dramatic reduction
in the total number of parts required to accomplish a specified task. Some mecha-
nisms may be manufactured from an injection-moldable material and be con-
structed of one piece. For example, consider the compliant overrunning clutch
shown in Figure 1.3a [6, 7] and its rigid-body counterpart shown in Figure 1.3b.
Considerably fewer components are required for the compliant mechanism than for
the rigid mechanism. The reduction in part count may reduce manufacturing and
assembly time and cost. The compliant crimping mechanism and its rigid-body
counterpart illustrated in Figure 1.4 are other examples of part reduction.

Compliant mechanisms also have fewer movable joints, such as pin (turning)
and sliding joints. This results in reduced wear and need for lubrication. These are
valuable characteristics for applications in which the mechanism is not easily
accessible, or for operation in harsh environments that may adversely affect joints.
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(a) _ (b)

Figure 1.3. (a) Compliant overrunning clutch, and (b) its rigid-body counterpart shown
disassembled. (From [6] and [7}.)

Reducing the number of joints can also increase mechanism precision, because
backlash may be reduced or eliminated. This has been a factor in the design of
high-precision instrumentation [8, 9]. An example of a high-precision compliant
mechanism is shown in Figure 1.5. Because the motion is obtained from deflection
rather than by adjoining parts rubbing against each other, vibration and noise may
also be reduced.

An example of a compliant mechanism designed for harsh environments is
shown in Figure 1.6. This simple gripping device holds a die (such as a computer
chip) during processing. The die must be transported between several different
chemicals without becoming damaged. Made of Teflon—inert to the chemicals in
which it is placed —the gripper holds the die without external force.

Because compliant mechanisms rely on the deflection of flexible members,
energy is stored in the form of strain energy in the flexible members. This stored
energy is similar to the strain energy in a deflected spring, and the effects of springs
may be integrated into a compliant mechanism’s design. In this manner, energy can
easily be stored or transformed, to be released at a later time or in a different man-
ner. A bow-and-arrow system is a simple example. Energy is stored in the limbs as
the archer draws the bow; strain energy is then transformed to the kinetic energy of

Input link

¥ e
JALILIRRY

™ Spring

rod

(a) (b)

Figure 1.4. (a) Compliant crimping mechanism developed by AMP Inc., and (b) its rigid-
body counterpart . Because of symmetry, only half the mechanism is shown. (From [4].)



