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PREFACE

Recognition of the need to introduce the ideas of uncertainty reflects in
part some of the profound changes in engineering over.the last two decades. The
natural question arises: how to deal with uncertainty? Since one of the meanings
of uncertainty is randomness, a natural answer to this question was and often
appears to be to apply the theory of probability and random processes. This idea
was spectacularly successful, and many scientists even refer to a “probabilistic
revolution”.

However, as was established recently the probabilistic methods are
accompanied with serious difficulties during their implementation process in
engineering applications. This gave rise to other, alternative treatments of
uncertainty. This volume deals with both probabilistic and non-probabilistic
aspects of uncertainty modelling. In particular, the fuzzy-set-based analysis and
the anti-optimization methods are pursued, in addition to recent developments in
the stochastics theory and applications. The emphasis is placed on applications in
civil, mechanical and aerospace engineering.

The aim of this volume is to present to researchers, engineers and
graduate students working on and interested in the problems concerned with the
mechanics of solids and structures, a unified view on uncertainty. The current
state of the development and applications of uncertainty modelling and analysis
will be reviewed from alternative and seemingly opposing points of view.
Indeed, the present state of affairs can be characterised as that of Tower of
Babel: There is no discussion between various researchers, actively embracing
different points of view.

The book aims to disseminate recent stochastic and, especially, non-
stochastic approaches to model the uncertainty. It poses questions which many
engineers were interested to ask, but were afraid to do. Answers to these
questions and in-depth discussions should appeal in the first place to practicing
engineers who must constantly widen their perspectives, researchers will find
the lecturers most illuminating for the book accommodated alternative and often
opposing points of view. Pragmatic approach allows one to choose modern
techniques which most suit to the practical situations. This is not just one more
book about uncertainty. This is a collection of the latest thoughts of engineers
and scientists from all over the world about many, often overlooked and yet to
be recognized facets of ever-present uncertainty.

It was a pleasure to edit this volume. The cooperation of all authors is
gratefully appreciated. Most unfortunately, Dr. Rudolf Lohner was unable to
submit his contribution on the interval analysis. We were most fortunate, that
Professor Ulrich Kulisch graciously agreed to contribute to this volume, on this
topic. We record our heartfelt thanks to CISM International Centre for



Mechanical Sciences for both approving the course and providing the most
pleasant atmosphere during its conducting in the beatiful palace in Udine. Rare
courtesies extended by the Secretary General, Professor Giovanni Bianchi and
Rector, Professor Sandor Kaliszky must be recorded. Reliable and encouraging
assistance as well as the extremely kind patience of Professor Carlo Tasso of the
University of Udine are most kindly acknowledged. The staff of Mrs. Elsa Venir
Burti provided most reliable and timely service throughout the course, and
created an atmosphere of exceptional dedication and work including nearly
instant copying service, efficient communication between the lecturers and the
attendees, library facilities, and solution of numerous problems of various
magnitudes; all of these seemingly small gestures and good will and courtesy
truly make CISM a unique and great institution that must be cherished, preserved
and possibly expanded for the benefit of engineering sciences. Last but not least,
our thanks are to all the attendees of the course: While teaching them, all
lecturers learned a lot, not excluding the ways how the material should be
presented more efficiently. The responsibility on any misconceptions or
typographical errors lies upon ourselves, the authors themselves. We will be
most indebted if you could communicate them to us by electronic mail at
ielishak@me.fau.edu. or by the FAX of 561-297-2825.

Isaac Elishakoff
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CHAPTER 1

HOW TO UTILIZE THE ANTI-OPTIMIZATION ANALYSIS
TO TREAT UNCERTAINTY IN SEISMIC EXCITATION?

A. Baratta and G. Zuccaro
University of Naples “Federico II”’, Naples, Italy

ABSTRACT

In the paper an approach to treat uncertainty in the response of structures under the action
of earthquakes is presented. The main problem is focused in the unpredictability of the
seismic accelerograms, and the research effort points at identifying the set of admisible
quakes by a few basic parameters (duration, peak acceleration, gross information on the
power spectrum, ...). The influence of the details of ground shaking, that really have a very
significant influence on the structure's performance, is approached by the institution of a
worst-case scenario. The basic idea is to build up a consistent model for the seismic hazard
at the site, and to set up some rules which ground shaking must fit. Hence, the worst
combination of details of the quake is sought by a search procedure, aiming at identifying
the earthquake producing the extremum of some response parameters, in the set of
admissible quakes. In the paper a number of rSeference models are set up, and results
referred to a particular seismic area, the Campania region in Italy, are drawn, proving that
the procedure is efficient and, to some extent, practical.

1) INTRODUCTION

The safety and economics of structures in seismic areas are highly dependent on the
calibration of the appropriate seismic action. This is certainly one of the most interesting
subjects-in-aseismic engineering. The extremely unpredictable variability of the proceeding
of an earthquake and its effects at a given site, does not allow to define the solution of the
problem in a definite, unique, way in a deterministic context. Uncertainty involves basically,
from-a struetural point of view, the time-history of ground oscillation, since it, apart from
some overall features, seems quite unpredictable while, on the other side, the structures'
response is very sensitive even to small and apparently not significant details of the base
vibration (see i.e. Ref [1], where it is proved that a 2+10% random perturbation of the
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ordinates of an accelerogram yields 50% and more variation in the response of th P-A
elastic-plastic oscillator). The intrinsically hazardous nature of the problem suggests that a
probabilistic or possibilistic point of view must be taken, aiming at keeping the hazard as
small as possible, as far as this is economically compatible. On the other hand, the lack of
instrumental records of significant seismic events at any site has addressed the researchers
to make reference to some abstract model as a reference point for the synthesis of
earthquake-type accelerograms. This approach requires that fundamental characters of
seismic shaking at the site are known or, at least, can be reasonably predicted. In this
regard, it has been recognised all over the world that some properties of recorded
accelerograms, like peak acceleration, duration, build-up and decay, power distribution on
the frequency range and so on, are strictly related to the localization of the epicenter and to
the geological constitution of the site. This means that some central characters of the
forcing function can be identified at every site, while a lot of many other details remain free
to vary in a less controllable way, practically random or indeterminate to within some
given, possibly fuzzy, boundary. Therefore, methods for the synthesis of earthquake-type
accelerograms mostly rely on the simulation of a large number of random parameters
correlated to the accelerogram ordinates, plus a finite, smaller number of local constants
which represent the parameters conditioning the basic properties of the accelerograms to be
generated. According to this philosophy, design accelerograms are taken more or less
randomly from the whole population that can be potentially generated on the basis of the
rationale one refers to; safety relies mainly on the statistical managing of the results and can
be guaranteed only up to a given extent.

The problem that is illustrated in the present chapter is concerned with the case when
high reliability is required; in this case one may need to select the most severe shape of the
forcing function in the set of site-compatible accelerograms, reserving randomness, and
consequent statistical treatment of uncertainty, to basic properties like peak acceleration and
energy. Baratta and Zuccaro (see Baratta [2,3,4], Zuccaro [5], Baratta and Zuccaro [6,7,8])
developped a technique to produce the maximum theoretical values of the structural
response under seismic load at given site. They pursued the goal combining available
techniques for synthesis of random accelerograms (Ruiz-Penzien [9,10]) with optimization
procedures capable to maximize some parameters, significant for aseismic design, in the
respect of the constraints represented by the basic values characterizing the shaking
properties at the site, as will be explained in Sec. 4. The introduction of an optimal criterion
for the selection of time-histories that are the most dangerous with respect to a given
response parameter, leads to the idea that the compatibility criterion for accelerograms to be
synthesized can be formulated in some simpler way, that lends itself to optimization more
naturally than random generators do. The first proposals on this line were advanced by
Drenick [11,12,13,14] and Shinozuka [15] in the early 70's, and later on by Elishakoff and
Pletner [16] and Baratta et al. [17,18]. All these approaches utilized an alternative, non-
probabilistic, avenue. Drenick [11,12] used a constraint on the total energy which the
earthquake is likely to develop at a certain site, as a description of uncertainty. He used the
Cauchy-Schwarz inequality to determine the maximum response of the system to such an
excitation. In the opinion of several investigators such a bound was too conservative.
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Shinozuka [15] has suggested to characterize the earthquake uncertainty by specifying an
envelope of the Fourier amplitude spectrum. Numerical calculations have demonstrated that
the maximum response of the structure predicted by this method is less than that predicted
in Refs. [11,12]. Elishakoff and Pletner [16] investigated the modification of the response
prediction when the global information on the excitation is increased. In particular, the
maximum possible response, which the structure may develop, was evaluated under the
assumption that only the bound on base acceleration is known; then the maximum response
was modified under the assumption that in addition to the base acceleration bound, the
bounds on base velocity and/or displacement were specified. Finally, an application to
earthquake engineering of ellipsoidal modelling, proposed as a general model for
uncertainty .in mechanical problems by Elishakoff and Ben-Haim in 1990 [19], and first
introduced in the theory of control by Schweppe [20] and previously applied to deal with
geometrical imperfections in structural analysis [21], is developed by Baratta et al. in Refs
[17, 18], and is fully illustrated in Sec.5. The term antioptimization was coined by
Elishakoff (1991) for more general, than convex, uncertainties.

2) BASIC EQUATIONS AND BEHAVIOUR OF THE SDOF SHEAR-TYPE FRAME

2.1) ELASTIC BEHAVIOUR

Consider the simple linear SDOF shear frame in Fig. 2.1, with natural frequency ®,,
damping ratio , and inertial mass m, and let u be the horizontal displacement of the beam
with respect to the base of the column, (positive as shown). under the action of a ground
acceleration a(t).

m F=ma 17 a
s
"
a(t)
N
Fig. 2.1: The sdof shear-frame in the elastic range

The equation of motion is
i+200,u+o2u=a(t) (2.1)

with initial conditions
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u@0=0 ; w0)=0

The solution, as well known, is given by

t
u(t) =fa(t)h(t - 7)dt

where h(-) is the impulse response function

1 .
h(x)= m—d exp(—C o, x) sin(o 4x)

0

with Dy =0, 1—C2 :

2.2)

2.3)
if x>0

2.4
if x<O0

2.2) PERFECTLY PLASTIC BEHAVIOUR WITH DUCTILITY CONTROL

2.2.1) Basic statements

a(cmsec2) \

Fig. 2.2: The shear type sdof system under consideration
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One considers the shear type frame (STF) in Fig. 2.2. under the action of a ground
acceleration a(t), and denotes by M, the limit plastic moment in the columns.

The condition of the rotational equilibrium leads to

FH
= 2.5)

where M denotes the bending moment at the top and at the bottom of the piles, and F
denotes the total horizontal force on the transverse beam.
Putting M = M, in eq. (2.5), one gets the total limit shear force

M,
_ 2.6
H ma ( )

where the strength of the system is expressed in term of acceleration by

LY
m

a,= 2.7

The characteristic diagram of the structure is shown in Fig.2.2; where u, is the
instantaneous value of the plastic displacement after the elastic thresholds a', = a, > 0 and/or
a",= —a, <0 have been violated.

The-equations of the lines I, IT and III shown in Fig. 2.2 are

line I: a,(u)= co(z)(u— up)
line II: a_ (u)=al 2.8)
line II: a (u)=a)

2.2.2 The elastic-plastic equation of motion
One studies the dynamic behaviour of the system considered by the following elastic-
plastic equation of the motion

u(t) + £, (u,q, Up,Up) = a(t) 2.9

where f,(u,0,u;,0,) denotes the restoring force that the numerical procedure updates
during the elastic-plastic hysteresis; it can be expressed in the following form:
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f al <m§[u(t)—up(t)] <al (2.10)

2o (- ,) +03u-uy) iffo2[u®)-u,®)]=a; and aw)<o

£ it ) mﬁ[u(t)—up(t)] —a” and 0(t)>0

Woo(a—u,)+aly i mﬁ[u(t)~up(t)]=a;, and ut)>0  (2.11)

Woo(a-u)+a", if mﬁ[u(t)—up(t)] =a” and u(t)<0  (2.12)

where  is the damping coefficient and upand u, are given by

u,,(o:{u if [coﬁ(u—up)=a{, and u(t)>0] or [mz(u—up)za;’ and u(t)<0]
otherwise (2.13)

u,(t) = g u,(t)de (2.14)

2.3) PERFECTLY PLASTIC BEHAVIOUR WITH P-A EFFECT AND DUCTILITY CONTROL

2.3.1) Basic statements

One considers the shear type frame in Fig. 2.3 under the action of a ground acceleration
a(t) and of the vertical loads W given by

W=mg/2 (2.15)

with g denoting the gravity acceleration. The condition of the rotational equilibrium leads to

Wu FH
M=TU+T (2.16)

Substituting u = 0 and M = M, in eq. (2.16), one gets the total limit shear force in the
absence of P-A effect

g M,
o =T = Ma, (2.17)

Alternatively, putting F =0 and M = M, in €q. (2.16), one gets the condition for collapse by
purely geometrical effect
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Wy M | @2.18)

=mg/2 W=mg/2 / a(cm sec=2) \

Fig. 2.3 The shear type sdof system under consideration

Substitution of eqs. (2.17) and (2.15) into eq. (2.18) yields
mgu=4M_ =F H (2.19)

whence, introducing 8 = g/ H, one defines the collapse displacement

u =F, /(8 m) (2.20)

corresponding to the limit valueF of the shear force F at which the residual lateral
strength of the frame is zero.

The virgin strength of the system can be expressed in term of acceleration by a, = Fo/m,
whence
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a,

5 (2.21)

Uy =

The characteristic diagram of the structure is shown in Fig.2.3; where a', and a",
represent respectively the elastic limit for u—u, >0and for u—u, <Oonce the assigned

elastic thresholds a', = a, > 0 and/or a", = —a, < 0 are violated, u, being the instantaneous
value of the plastic displacement.
The equations of the lines I, II and IIT shown in Fig. 2.3 are

line I: ao(u):m%(u—up)
line I: a,(u)=a,-Su (2.22)
line M: a,(u)=aj-Su

where the elastic component of the displacement in P-A effect has been neglected.
By intersections of the line I with II and II with III one gets the values of a', and a", and

of the corresponding displacements:

) 2
a'y+og u
2 . 0 0 “p
a', =wg(u'—u, ) with u'=———— 2.23
u 0( p) O)g+9 ( )
and
a"s+odu
a",=og(u"-u,) with u"=——m2 0 e (2.24)
0

2.3.2 The elastic-plastic equation of motion with P-A effect

Neglecting the elastic component of the displacement in P-A effect, one studies the
dynamic behaviour of the system considered by formally the same equation of the motion
(2.9) where f,(u,0,u,,u,) is expressed in the following form:

u"(t) <u(t) <u'(t)
Awo(a-u,)+05(u-u,) ifju)=u'(t) and a(t)<0 (225)
u(t)=u"(t) and u(t)>0
£ (u,0,up,,0,) =1
Awo(a—1i,)+a',—9u' if ut)=u'(t) and W(t)>0 (2.26)
Awoa—u,)+a",—8u"  if u(t)=u"(t) and W(t)<0 (227)
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where u'and u" are given respectively by eqgs. (2.23) and (2.24), and u,andu, are given
by

@o+9) . . . . . .
= —(Dg—u if u(t)=u'(t) and u(t)>0 or u(t) =u"(t) and u(t) <0 2.28)
0 otherwise
uy(t) =Ju,()de (2.29)
5 .

3) BASIC TEST ACCELEROGRAMS

The approach that is presented in this chapter is calibrated with reference to the
following accelerographic records obtained on the occasion of the Campano-Lucano
Earthquake of Nov. 23, 1980, in Italy, not far from city of Naples. The magnitude of the
event was estimated in 6.5, and the epicentral intensity was set at the 7.5 degree of the
MKS scale. The event was rather atypical, mainly because of its duration that lasted up to
almost two minutes in some sites. Anyway, only the duration of the structural-significant
motion will be considered here, that varies from about 52 to more than 86 secs.

Information on the local characters of ground motion is derived from direct inspection of
recorded accelerograms, limiting the analysis, for simplicity, to only the NS component. The
considered records are summarized in Table 3.1

Recorded ordinates of all accelerograms are converted to cm sec”, and all earthquakes
are preliminarly reduced to the same norm [the energy, eq.(5.1)] as the one recorded in
Torre del Greco, the most close site to Naples, that is the largest town in the region, so that
every record possesses energy Eq = 79.46 cm sec™?.

Harmonic (Fourier) analysis is performed for every earthquake, thus obtaining for each
one an expansion of the type (5.10) with the a;(t) given as in eq. (5.11). The analysis is
carried on to include n = 400 sine and cosine waves for Torre del Greco, Sturno and Calitri
earthquakes, while this number is increased up to n= 800 waves for the accelerograms
recorded in Brienza and Bagnoli Irpino, that exhibit power spectra scattered on a wider
range of frequencies.

A plot of each accelerogram, with the approximation resulting from its Fourier expansion
and its power spectrum is quoted in Figs. 3.1.1 + 3.1.5.



