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PREFACE

While teaching fluid dynamics to students preparing for the various Parts
of the Mathematical Tripos at Cambridge I have found difficulty over the
choice of textbooks to accompany the lectures. There appear to be many
books intended for use by a student approaching fluid dynamics with a view
to its application in various fields of engineering, but relatively few which
cater for a student coming to the subject as an applied mathematician and
none which in my view does so satisfactorily. The trouble is that the great
strides made in our understanding of many aspects of fluid dynamics during
the last 50 years or so have not yet been absorbed into the educational texts
for students of applied mathematics. A teacher is therefore obliged to do
without textbooks for large parts of his course, or to tailor his lectures to the
existing books. This latter alternative tends to emphasize unduly the classical
analytical aspects of the subject, and the mathematical theory of irrotational
flow in particular, with the probable consequence that the students remain
unaware of the vitally important physical aspects of fluid dynamics. Students,
and teachers too, are apt to derive their ideas of the content of a subject from
the topics treated in the textbooks they can lay hands on, and it is undesirable
that so many of the books on fluid dynamics for applied mathematicians
should be about problems which are mathematically solvable but not
necessarily related to what happens in real fluids.

I have tried therefore to write a textbook which can be used by students of
applied mathematics and which incorporates the physical understanding
and information provided by past research. Despite its bulk this book is
genuinely an introduction to fluid dynamics; that is to say, it assumes no
previous knowledge of the subject and the material in it has been selected
to introduce a reader to the important ideas and applications. The book
has grown out of a number of courses of lectures, and very little of the
material has not been tested in the lecture room. Some of the material is old
and well known, some of it is relatively new; and for all of it I have tried to
devise the presentation which appears to be best from a consistent point
of view. The book has been prepared as a connected account, intended
to be read and worked on as a whole, or at least in large portions, rather
than to be referred to for particular problems or methods.

I have had the needs of second-, third- and fourth-year students of ap-
plied mathematics in British universities particularly in mind, these being
the needs with which I am most familiar, although I hope that engineering
students will also find the book useful. The true needs of applied mathe-
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maticians and engineers are nowadays not far apart. Both require above all
an understanding of the fundamentals of fluid dynamics; and this can be
achieved without the use of advanced mathematical techniques. Anyone
who is familiar with vector analysis and the notation of tensors should have
little difficulty with the purely mathematical parts of this work. The book
is fairly heavily weighted with theory, but not with mathematics.
Attention is paid throughout the book to the correspondence between
observation and the various conceptual and analytical models of flow
systems. The photographs of flow systems that are included are an essential
part of the book, and will help the reader, I hope, to develop a sense of the
reality that lies behind the theoretical arguments and analysis. This is
particularly important for students who do not have an opportunity of seeing
flow phenomena in a laboratory. The various books and lectures by L.
Prandtl seem to me to show admirably the way to keep both theory and
observation continually in mind, and I have been greatly influenced by
them. Prandtl knew in particular the value of a clear photograph of a well-
designed experimental flow system, and many of the photographs taken by
him are still the best available illustrations of boundary-layer phenomena.
A word is necessary about the selection of topics in this book and the order
in which they have been placed. My original intention was to provide
between two covers an introduction to all the main branches of fluid
dynamics, but I soon found that this comprehensiveness was incompatible
with the degree of thoroughness that I also had in mind. I decided therefore
to attempt only a partial coverage, at any rate so far as this volume is con-
cerned. The first three chapters prepare the ground for a discussion of any
branch of fluid dynamics, and are concerned with the physical properties of
fluids, the kinematics of a flow field, and the dynamical equations in general
form. The purpose of these three introductory chapters is to show how the
various branches of fluid dynamics fit into the subject as a whole and rest
on certain idealizations or assumptions about the nature of the fluid or the
motion. A teacher is unlikely to wish to include all this preliminary material
in a course of lectures, but it can be adapted to suit a specialized course and
will I hope be useful as background. In the remaining four chapters the fluid
is assumed to be incompressible and to have uniform density and viscosity.
I regard flow of an incompressible viscous fluid as being at the centre of fluid
dynamics by virtue of its fundamental nature and its practical importance.
Fluids with unusual properties are fashionable in research, but most of the
basic dynamical ideas are revealed clearly in a study of rotational flow of a
fluid with internal friction; and for applications in geophysics, chemical
engineering, hydraulics, mechanical and aeronautical engineering, this
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is still the key branch of fluid dynamics. I regret that many important
topics such as gas dynamics, surface waves, motion due to buoyancy forces,
turbulence, heat and mass transfer, and magneto-fluid dynamics, are
apparently ignored, but the subject is simply too large for proper treatment
in one volume. If the reception given to the present book suggests that a
second volume would be welcome, I may try later to make the coverage
more nearly complete.

As to the order of material in chapters 4 to 7, the description of motion of
a viscous fluid and of flow at large Reynolds number precedes the discussion
of irrotational flow (although the many purely kinematical properties of an
irrotational velocity distribution have a natural place in chapter 2) and of
motion of an inviscid fluid with vorticity. My reason for adopting this un-
conventional arrangement is not that I believe the ‘classical’ theory of irrota-
tional flow is less important than is commonly supposed. It is simply that
results concerning the flow of inviscid fluid can be applied realistically
only if the circumstances in which the approximation of zero viscosity is
valid are first made clear. The mathematical theory of irrotational flow is a
powerful weapon for the solution of problems, but in itself it gives no
information about whether the whole or a part of a given flow field at large
Reynolds number will be approximately irrotational. For that vital informa-
tion some understanding of the effects of viscosity of a real fluid and of
boundary-layer theory is essential; and, whereas the understanding was
lacking when Lamb wrote his classic treatise Hydrodynamics, it is available
today. I believe that the first book, at least in English, to show how so many
common flow systems could be understood in terms of boundary layers
and separation and vorticity movement was Modern Developments in Fluid
Dynamics, edited by Sydney Goldstein. That pioneering book published
in 1938 was aimed primarily at research workers, and I have tried to
take the further step of making the understanding of the flow of real
fluids accessible to students at an early stage of their study of fluid
dynamics.

Desirable though it is for study of the flow of viscous fluids to precede
consideration of an inviscid fluid and irrotational flow, I appreciate that
a lecturer may have his hand forced by the available lecturing time. In the
case of mathematics students who are to attend only one course on fluid
dynamics, of length under about 30 lectures, it would be foolish to embark
on a study of viscous fluid flow and boundary layers in preparation for a
description of inviscid-fluid flow and its applications, since too little time
would be left for this topic; the lecturer would need to compromise with
scientific logic, and could perhaps take his audience from chapters 2 and 3
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to chapter 6, with some of the early sections of chapters 5 and 7 included.
It is a difficulty inherent in the teaching of fluid dynamics to mathematics
undergraduates that a partial introduction to the subject is unsatisfactory,
tending to leave them with analytical procedures and results but no in-
formation about when they are applicable. Furthermore, students do take
some time to grasp the principles of fluid dynamics, and I suggest that
40 to 50 lectures are needed for an adequate introduction of the subject
to non-specialist students. However, a book is not subject to the same limi-
tations as a course of lectures. I hope lecturers will agree that it is desirable
for students to be able to see all the material set out in logical order, and to
be able to improve their own understanding of the subject by reading,
even if in a course of lectures many important topics such as boundary-
layer separation must be ignored.

Exercises are an important part of the process of understanding and
mastering so analytical a subject as fluid dynamics, and the reading of this
text should be accompanied by the working of illustrative exercises. I should
have liked to be able to provide many suitable questions and exercises, but
a search among those already published in various places did not produce
many in keeping with the approach adopted in this book. Moreover, the
published exercises are concentrated on a small number of topics. The
lengthy task of devising and compiling suitable exercises over the whole
field of ‘modern’ fluid dynamics has yet to be undertaken. Consequently
only a few exercises will be found at the end of sections. 'To some extent
exercises ought to be chosen to suit the particular background and level of
the class for which they are intended, and it may be that a lecturer can
turn into exercises for his class many portions of the text not included
explicitly in his course of lectures, as I have done in my own
teaching.

It is equally important that a course of lectures on the subject matter of
this book should be accompanied by demonstrations of fluid flow. Here the
assistance of colleagues in a department of engineering may be needed. The
many films on fluid dynamics that are now available are particularly valuable
for classes of applied mathematicians who do not undertake any laboratory
work. By one means or another, a teacher should show the relation between
his analysis and the behaviour of real fluids; fluid dynamics is much less
interesting if it is treated largely as an exercise in mathematics.

I am indebted to a large number of people for their assistance in the
preparation of this book. Many colleagues kindly provided valuable com-
ments on portions of the manuscript, and enabled me to see things more
clearly. I am especially grateful to Philip Chatwin, John Elder, Emin
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Erdogan, Ken Freeman, Michael Mclntyre, Keith Moffatt, John Thomas
and Ian Wood who helped with the heavy task of checking everything in
the proof. My thanks go also to those who supplied me with diagrams
or photographs or who permitted reproduction from an earlier publica-
tion; to Miss Pamela Baker and Miss Anne Powell, who did the endless
typing with patience and skill; and to the officers of Cambridge University
Press, with whom it is a pleasure to work.

G.K.B.
Cambridge

April 1967
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CONVENTIONS AND NOTATION

Bold type signifies vector character.
x, X’ position vectors;'|x| = 7
s = x—x’ relative position vector
u velocity at a specified time and position in space; lul = ¢

D 0 .. : s
= —+u.V operator giving the material derivative, or rate of change at a

Dt o point moving with the fluid locally; applies only to functions of x and ¢
System I Co-ordinates Velocity components
Rectilinear X, ¥, 8 Or X, Xg, X3 u, v, W Or Uy, Uy, Us
Polar, two dimensions r, 0 u, v Or U, U
Spherical polar 7,0, ¢ u, U, W OT Uy, Ug, Uy
Cylindrical x, 0, ¢ (02=y%*+2?%) U, V, W OF Uy, Ug, Uy

A=V.u rateofexpansion (fractional rate of change of volume of amaterial element)
@ = Vxu vorticity (twice the local angular velocity of the fluid)
1 (8u,- Ou,-) )
=+ rate-of-strain tensor
ox; 0x;
¢ scalar potential of an irrotational velocity distribution (u = Vo)
B vector potential of a solenoidal velocity distribution (u = V x B)
Yy stream function for a solenoidal velocity distribution;
(@) two-dimensional flow: B = (o, o, ¥)
o A
u = 5;;, v = _&_
(b) axisymmetric flow:

e =
() 2

_1% _
“"rae’ = or

. . U4 1 10y
cylindrical co-ordinates By = o’ U, = 5 70’ Uy = ™
. v 1 o 1 oY
1 - d t B = = e = —_—-—
polar co-ordinates B¢ = " ih 6’ Ur = 2sin 6 26’ o rsin 0 or

n unit normal to a surface, usually outward if the surface is closed

8V, ndA4, 8x volume, surface and line elements with a specified position in space

ér, ndS, 81 material volume, surface and line elements

o4 stress tensor; o;n;04 is the i-component of the force exerted across the
surface element nd4 by the fluid on the side to which n points

F = — V¥ conservative body force per unit mass

Inertia force (per unit mass) minus the local acceleration

Vortex-line line whose tangent is parallel to w locally

Line vortex singular line in vorticity distribution round which the circulation

is non-zero

Books which may provide collateral reading are cited in detail in the text,
usually in footnotes. A comparatively small number of original papers are also
referred to, sometimes for historical interest, sometimes because a precise acknow-
ledgement is appropriate, and sometimes, although only rarely, as a guide to further
reading on a particular topic. These papers are cited in the text as ‘Smith (19 50)°,
and the full references for both papers and books are listed at the end of the book.
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