CNIC-01221 NU-0008 # Eu₂O₃ 在多种 Al₂O₃ 载体上 固体-固体表面吸附的研究 ### 刘荣川 山崎養武"余智 周元 (南京大学,南京) * (九州工业大学情报工学部,饭据 820,日本国) # 摘 要 用穆斯堡尔谱学、X 射线衍射等方法研究了在多种 Al_2O_3 载体上的固体-固体表面吸附。结果表明, Eu_2O_3 在复合载体 Al_2O_3/SiO_2 上的固体-固体相互作用和 Eu_2O_3 在单一载体上分散时的情况有明显差异。用混合模型可成功地解释 Eu_2O_3 在 γ - Al_2O_3 或 η - Al_2O_3 载体表面上的分散。 # Study of the Solid-Solid Surface Adsorption of Eu₂O₃ on Various Al₂O₃ Supports LIU Rongchuan Yoshitake Yamazaki* YU Zhi ZHOU Yuan (Nanjing University, Nanjing) * (Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, 820 Japan) #### **ABSTRACT** Solid-solid surface interactions of Eu_2O_3 on various oxide substrates are investigated with X-ray and Mössbauer experiments. The results indicate that the interaction of Eu_2O_3 on the complex support differs from that having simple support. An incorporation model is used to explain how Eu_2O_3 disperses onto the surface of γ -alumina or η -alumina. #### INTRODUCTION The understanding of the atomic processes on solid surfaces is considerable interest because of its relevance to a variety of technologically important processes such as crystal and thin film growth, surface oxidation, heterogeneous catalysis and so fortb. We have previously studied the dispersion of Eu_2O_3 onto the surface of γ -Al₂O₃, η -Al₂O₃, SiO₂ gel and amorphous Al₂O₃ by different methods. The changes in X-ray diffraction patterns and Mösshauer parameters as a function of europium content revealed the differences of interaction between Eu_2O_3 and the several substrates studied. Some of the results have heen previously reported [1~3]. In order to elucidate the behavior of Eu_2O_3 in a solid-solid adsorption processes, we expanded our study by using a Al_2O_3/SiO_2 complex substrate and applying the incorporation model proposed by Y. Chen ^[4]. The mechanism of the dispersion of Eu_2O_3 onto the crystalline supports, γ -Al₂O₃ and η -Al₂O₃, is discussed in this paper. #### 1 EXPERIMENT The Al₂O₃/SiO₂ complex substrates were prepared as follows: SiO₂ gel was mixed into Al (NO₃)₃ • 9H₂O₂. The solutions were dried roughly by stirring at 120 °C. The dried solutions of Al₂O₃/SiO₂ were then treated for 2 h at 300 °C, 2 h at 500 °C and finally for 18 h at 600 °C. X-ray diffraction patterns show that the Al₂O₃/SiO₂ was amorphous. Its specific surface area of carrier [BET] was determined to be 211.6 m²/g. Samples of Eu₂O₃ supported on the Al₂O₃/SiO₂ complex substrates were prepared as previously described ^[1]. The Mössbauer measurements were performed at room temperature with a conventional Mösshauer spectrometer. The isomer shift values of the ¹⁵¹Eu resonance lines are given relatively to bulk Eu₂O₃ at room temperature. # 2 RESULTS AND DISCUSSION Typical X-ray patterns of the doped Al_2O_3/SiO_2 complex substrates are shown in Fig. 1. The diffraction peaks arising from the Eu_2O_3 structure could not be seen until the Eu_2O_3 content mass fraction reaches 75%, a concentration far above the monolayer range. According to the simple electrostatic model [5], 37.6% Eu₂O₃ gives a monolayer. This behavior is different from that found for a single substrate previously reported [1~3]. Fig. 1 X-ray diffraction pattern of Eu₂O₃ on Al₂O₃/SiO₂ substrates for different concentration ranges - a) mass fraction of Eu₂O₃ is 60% - b) mass fraction of Eu₂O₃ is 75% - c) mass fraction of EuzO3 is 90% Typical Mössbauer spectra for different concentrations of Eu₂O₃ on a Al₂O₃/SiO₂ substrate are shown in Fig. 2. The corresponding isomer shift (IS) values and effective line width as a function of the Eu₂O₃ content are listed in Table 1. The experimental errors are ± 0.02 mm/s and ± 0.10 mm/s for isomer shift and line width respectively. Table 1 Mossbauer parameters of pure Eu₂O₃ and Eu₂O₃ supported on Al₂O₃/SiO₂ | Sample | Mass Fraction of Eu ₂ O ₃ | Isomer Shift
mm/s | Line Width
mm/s | |---|---|----------------------|--------------------| | Eu ₂ O ₃ supported
on Al ₂ O ₃ /SiO ₂ | 10.0 | -0.44 | 1.83 | | | 30.0 | -0.33 | 2. 08 | | | 45.0 | -0.37 | 2. 42 | | | 60.0 | -0.30 | 2.47 | | | 75. 0 | -0.25 | 2. 54 | | | 90. 0 | -0.09 | 2. 32 | | Pure Eu ₂ O ₃ | 99. 99 | 0.00 | 2.44 | Fig. 2 Mössbauer spectra of Eu₂O₃ on complex Al₂O₃/SiO₂ - a) mass fraction of Eu₂O₂ is 10% - b) mass fraction of Eu₂O₃ is 60% - c) pure Eu₂O₃ Fig. 3 shows the IS as a function of Eu₂O₃ content on amorphous Al₂O₃, SiO₂ gel and a Al₂O₃/SiO₂ complex substrate. We noted that the IS of Eu₂O₃/Al₂O₃ is larger than that of Eu₂O₃/SiO₂. The explanation for this difference is that since the electronegativity of Al is smaller than that of Si, the tendency of attracting electrons is smaller. This indicates that the Al-Eu interaction is different from that of Si-Eu and that their influence on the surrounding electron cloud of Eu atom dispersed on its surface is distinct. If Eu₂O₃ disperses onto the Al₂O₃ surface with a larger surrounding electron density of Eu atoms, its values of IS are larger than those of Eu₂O₃ dispersed on the SiO₂ support. The IS of Eu_2O_3/SiO_2 substrate lies between those of Eu_2O_3/Al_2O_3 and Eu_2O_3/SiO_2 gel (Fig. 3). Together with the X-ray diffraction result, the dispersion of Eu_2O_3 onto its surface seems to show a blent effect. Fig. 3 Comparison of IS value of Eu₂O₃ supported on a) amorphous Al₂O₃ b) Al₂O₃/SiO₂ complex substrate c) SiO₂ The dispersion of Eu₂O₃ onto the surface of γ-Al₂O₃, or η-Al₂O₃ had been studied previously. To get a better understanding of the metal oxide/substrate interaction, the surface structure of the substrate is investigated. For γ-Al₂O₃, the [110] plane is considered to be the preferentially exposed surface. Such an assumption has been supported by the neutron diffraction studies of CD₄ absorbed on γ -alumina. Thus, as a first approximation, the structure of γ -Al₂O₃ can be assumed to consist of particles formed by one dimensional stacking C-D-C-D layers as shown in Fig. 4, with a sequence of C-D-C-D-. The ratio of the exposure probabilities of these two layers is one. The unit mesh of C-and D-can be expressed as [Al₂O₄] and Al_{4/3} [Al₂O₄] respectively. The Al³⁺ cations inside the bracket are octahedrally coordinated, while those outside the bracket are tetrahedrally coordinated [4]. Fig. 4 The structure of C-and D-layers of [110] plane in γ-Al₂O₃ and incorporation of metal cations into C-and D-layers. Fig. 4 shows the existence of vacant sites on the surface of γ-Al₂O₃. The diameter of Eu³⁺ (0.103 nm) is larger than the diameter of the Al³⁺, which is about 0.05 nm. So, when Eu₂O₃ disperses onto γ-Al₂O₃, at a loading below its monolayer dispersion capacity, the incorporation of Eu³⁺ into some of the exposed vacant sites is assumed to result in the formation of tetrahedral or octahedral Eu³⁺ cations, and at the same time the associated oxygen anions will stay at the top of the occupied sites. So the excess positive charges can be compensated. Based on these assumptions the dispersion capasity of Eu³⁺ cations is evaluated to be 10.4 cations/nm², or 0.28 g/100 m². As a consequence of the shielding effect of the capping oxygen anions, half of the vacant sites are actually not available for the incorporation of other cations. The dispersion capacity of Eu³⁺ cations therefore drops down to 5.2 cations/nm², or 0.14 g/100 m². Since the BET of γ-Al₂O₃ is 245 m²/g, Eu₂O₃ reaches the monolayer coverage at 25% Eu₂O₃ concentration. This result is in very good agreement with the 25.5% monolayer capacity obtained experimentally ^[1]. The structure of η -Al₂O₃ is different from that of γ -Al₂O₃, and its preferentially exposed plane is [111]^[6]. Using the same model, we can also get satisfactory results to explain Eu₂O₃ dispersion onto a η -Al₂O₃ surface. # 3 SUMMARY The interaction of Eu₂O₃ on different oxide substrates has been studied. The results indicate that there were strong interactions hetween Eu₂O₃ and the substrates. There is also an induced effect of the substrate on the structure of the Eu₂O₃ dispersed onto the carrier surface. For the Al₂O₃/SiO₂ complex substrate, it appears that there is an intermediate interaction. The incorporation model successfully explains how Eu_2O_3 disperses onto the surface of crystalline γ -Al₂O₃ and η -Al₂O₃. #### 4 ACKNOWLEDGEMENT The Authors acknowledge the helpful discussions with Prof. Chen Yi and Yan Qijie of Chemistry Depertment, Nanjing University. #### REFERENCES - 1 LIU Rongchuan, HSIA Yuanfu et al. Acta Physica Sinica 35, 1986; 243 - 2 LIU Rongchuan, HSIA Yuanfu, et al. Surface and Interface Analysis 11, 1988; 165 - 3 LIU Rongchuan, YAN Qijie, et al. China Nuclear Science and Technology Report CNIC-0007, 1991 - 4 CHEN Y, ZHANG L F, et al. Catalytic Science and Technology 1, 1991, 41 - 5 XIE Youchang, YANG Naifang, et al. Scientia Sinica (Series B) 26, 1983; 337 - 6 Schuit G C A, Gates B C. AICHE J. 19, 1973: 417