Developing Expert,
Database, and
Natural Language
Systems

Knowledge
Systems and

Prolog s

Developing Expert.
Database, and
Natural Language
Systems

Knowledge
Systems and

Proiog s

Adrian Walker
Michael McCord
John F, Sowa
Walter G. Wilson

Library of Congress Cataloging - in-Publication Data

Knowledge systems and Prolog : developing expert, database, and
natural language systems / Adrian Walker... -- 2nd ed.
p. cm.
Includes bibliographical references.
ISBN 0-201-52424-4
1. Expert systems (Computer science) 2. Prolog (Computer program
language) 3. Natural language processing (Computer science)

I. Walker, Adrian. '
A76,76.E95K58 1990
006.3'3--dc20 :
89-18658
CIP

Reproduced by Addison-Wesley from camera-ready copy supplied by the authors. -
Copyright © 1990 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retri
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher. Printed in the -
United States of America.

ISBN 0-201-52424-4
ABCDEFGHIJ-MA-943210

Preface

This book is about knowledge systems. It is about how to design them, how to
use them, and how to program them in a language called Prolog. A knowledge
system is a computer program that solves, or helps to solve, problems that would
otherwise have to be handled by a human expert alone. A knowledge system
may be

® an expert system,

m aprogram that understanus English (or another natural language),
m or a combination of the two.

In addition it may make good use of a database management system to store
parts of its knowledge.

This second edition of the book coincides with the availability of IBM Prolog
as a full IBM program product, supporting both IBM syntax and Edinburgh
syntax. The IBM Prolog program product has interfaces to other programming
languages, in particular to the database language SQL.

In addition to the expert system and natural language processing topics
covered in the first edition, the new edition also shows, with detailed examples,
how to build and use English-like intelligent front ends to relational databases
for traditional data processing topics such as inventory control and report
generation.” The integration of data processing and artificial intelligence topics is
illustrated by means of practical examples of writing English-like, executable
specifications of enterprise business models. The examples include flexible
modelling of business objects by inheritance hierarchies with overrides, and
automatic explanations of certain kinds of inheritance-based object-oriented
reasoning.

Knowledge systems are used to give advice and to solve problems in many
areas, such as business, science, technology, and law. The knowledge systems

v

vi Preface

described in this book have been developed at IBM, and have been used for
experiments in several subjects, including manufacturing planning, communi-
cation network management, evaluation of the ease of use of software packages,
and machine translation from one natural language to another-

Prolog is a programming language based on logical reasoning. As such, it
draws strength from the principles of mathematical logic—principles that were
developed well before the invention of the computer. Each of us can reason,
using knowledge in order to produce advice on several subjects, and each of us
can communicate in English or another natural language. Prolog is a very useful
programming language in which to write down our methods of reasoning and of
using English, so that they can be used by a computer. Prolog forms the basis for
a major national research effort in Japan, and it is increasingly used worldwide
as a very high level programming language. The Prolog programming tech-
niques in this book are drawn from existing knowledge systems, from classes the
authors have taught at IBM over a number of years, and from experience with
several programming projects including large system performance analysis, anal-
ysis of assembler programs, and Programmableé Logic Array simulation. The
programming examples are in IBM Prolog, which has built-in links to other
software, such as relational database management systems. It is available for
the VM and MVS operating systems. (At the time of this writing, the program
product "IBM PROLOG for 370" runs under the VM operating system. An
earlier program offering, "MVS/Programming in Logic" also runs under the
MVS operating system.) This version of Prolog was developed at the Paris
Scientific Center of IBM and at IBM laboratories in California.

The book has several levels of information. It contains

a nontechnical introduction to knowledge systems,
sections about how to set up and use knowledge systems,
introductory and advanced sections about how to program in Prolog, and

some summaries of advanced research.

This is an unusual span of topics and levels in one book. It is made possible, and
we think useful, by a unifying theme—the ability of people and of computer
programs to reason with everyday logic. Prolog is based on logic, and it provides
a clear, almost common sense view of the subject.

In keeping with the span of topics and levels, this book can be read in several
ways, with several purposes in mind.

® Because the book is partly about codifying the kinds of knowledge that all of
us have, it should be of interest to readers who would like to get a feel for
how their own areas of expertise could be represented in a knowledge system.

® Because the book also goes into depth in how to program in Prolog, it can be
read as a university text in Prolog programming, with applications to
knowledge systems and with pointers for research. In a practical course, it
can be used directly with IBM Prolog. For a course that emphasizes

Preface vii

principles, there is material on the logical basis for the semantics of Prolog
programs. Because the book describes many interesting aspects of expert
systems, databases, and natural language processing, it can be useful in
university courses on artificial intelligence, on databases, and in courses for
Linguists and Psychologists who are interested in computational experiments
in their fields.

s For readers who already know one or more programming languages, this
book can be used as an introduction to Prolog that will take them rapidly
beyond the introductory level, and that provides interesting examples of
knowledge systems. For those who are already Prolog programmers, the
book describes IBM Prolog—its syntax, and its rich set of built-in predicates
for direct support of many common programming practices.

Five different chapter sequences are suggested.

s For readers who are interested mainly in the possible uses of expert
database systems, the suggested sequence is
a Chapter 1,
= then Section 4.2,

® with more detail drawn from Chapters 2 and 3, plus the remainder of
Chapter 4 as needed.

s The only prerequisite for this sequence is a liking for computing and for
reasoning logically.

w For readers who are interested mainly in implementing expert database
system shells, the suggested sequence is
s Chapter 1,
s then Sections 3.1, 3.2.5, 4.2, 4.3 and 4.4,

= with more detail drawn from Chapter 2, plus the remainder of Chapters
3 and 4 as needed.

For this sequence, some background in logic, in relational databases, in

programming, or in discrete mathematics will be a help, although the book is

self-contained. It will also be useful to have available a computer with IBM

Prolog and the SQL database management system installed.

s For readers who are interested mainly in natural language processing the
suggested sequence is
= Chapters 1,2 and §,
m with additional material drawn from Chapter 3 as needed.

s Again, the only prerequisite for this sequence is a llkmg for computing
and for reasoning logically.

viii Preface

s For readers who are interested mainly in programming in Prolog the
suggested sequence is

Chapters 1 and 2,

Chapter 3 as far as page 177,

Appendix A on how to use IBM Prolog,

the rest of Chapter 3, then Chapters 4 and 5.

For this sequence, some background in logic, or in programming, or in
discrete mathematics will be a help, although the book is self-contained.
It will also be useful to have available a computer with IBM Prolog
installed.

m For readers who are interested first in the logical fundamentals of our
approach to knowledge systems and Prolog, the suggested sequence is

s Chapters 1 and 2,
s Appendix B on the logical basis for Prolog and Syllog,
® then material from Chapters 3, 4, and S as needed.

m For this sequence, some background in logic, or in discrete mathematics
will be a help, although again the book is self-contained.

There are exercises at the ends of Chapters 2, 3, 4 and 5. The exercises are
Ciscussed—and complete solutions are given for some of them—in the text.

Chapter 1, Knowledge Systems: Principles and Practice, discusses the
importance of knowledge systems. It gives a view of what a knowledge system is
and what it should be able to do. We look at the evolution of, knowledge systems
and their supporting software technology, and we describe the role of logic and of
the Prolog language in this evolution. Examples are given to show that logic
provides a good commeon notation for knowledge representation, and we describe
some of the trends that will make it easier to transfer knowledge.

Chapter 2, A Prolog to Prolog, describes Prolog as a programming language
based on symbolic logic. It shows how to write simple Prolog programs and run
them on a terminal, and gives many examples of Prolog programs. We look at
the declarative and procedural styles and interpretations of Prolog programs.
We introduce Prolog data structures and Prolog’s all-important generalized
pattern match mechanism, which is called unification.

Chapter 3, Programming Techniques in Prolog, describes some more
advanced programming methods. We show the importance of declarative style
in writing Prolog programs. We look at this style of writing in Prolog as a
distillation of good software engineering practices. We describe some advanced
data structures and the relation of data structures to the control and use of
recursion. Metalevel programming in Prolog is introduced, and we describe
some techniques for data processing and report generation.

Preface ix

Chapter 4, Expert Database Systems in Prolog, looks at a specific expert
database system shell; how it is used, how knowledge can be written down for it,
and how its underlying inference mechanism and database linkage is
programmed. We look at ways of using Prolog to reason with diverse
representations of knowledge. We describe exact and judgmental reasoning for
expert systems, the importance of explanations, and methods of producing
helpful explanations.

Chapter 5, Natural Language Processing in Prolog, looks at the techniques
that can be used to support English dialogue with a knowledge system. We look
at the process of translating an English sentence into a special Logical Form
Language, so that we can reason directly about the meaning of the sentence.
The translation process uses a dictionary, a grammar of English, and a way of
transforming the structure of a sentence into a logical form. A technique for
representing large lexicons is described. A grammar is used to show the process
of extracting an underlying structure from an English sentence. Then we show
how to find meaning in the structure by translating it into a logical form.

Chapter 6 contains our Conclusions—the book discusses significant aspects
of artificial intelligence, databases, logic, and programming. The methods used
in the book are based on computational logic, which acts as a bridge between the
empirical aspects of knowledge systems and the formal foundations of reasoning
in logic. Logic programming, in the form of Prolog, makes it possible to cover an
unusually wide range of topics, and to do so in the practical sense that we show
how to program much of what we discuss.

There are two appendices. Appendix A, How to Use IBM Prolog describes
the use of Prolog at a terminal, including techniques for metainterpretation, for
holding different programs in one Prolog workspace, and for input and output
using files. Appendix B, Logical Basis for Prolog and Syllog, outlines a basis in
mathematical logic for the meaning of Prolog programs, including a special
treatment of negation in Prolog.

It is a pleasure to acknowledge that many conversations with colleagues have
helped to shape the material in this book. We would like to thank Andre
Algrain, Clemens Beckstein, Arendse Bernth, Shelene Chang, Francisco Corella,
Joan Dunkin, Norman Foo, Se June Hong, Ann Gruhn, Dinesh Katiyar, Doug
Lorch, Peter Marusek, Alexa McCray, Gustaf Neumann, Richard O’Keefe,
Fernando Pereira, Anand Rao, J. Alan Robinson, Bill Santos, Ehud Shapiro,
Peter Sheridan, Oded Shmueli, Andrew Taylor, Doug Teeple, Daphne Tzoar,
Maarten van Emden, Jean Voldman, Barbara Walker, and Wlodzimierz
Zadrozny. We would particularly like to thank Professors Jacques Cohen
(Brandeis University), Edward L. Fisher (North Carolina State University),
Frank Kriwaczek (Imperial College, London) and Michael Lebowitz (Colum® ia
University) for their incisive reviews of an early version of this book. Special
thanks go to John Prager for meticulous reading of a final draft of the first
edition, and to Reed Hyde for material on IBM Prolog using the MVS operating
system. Chapter 1 and Section 4.2.2 are based on material that has appeared in
the IBM Journal of Research and Development and we would like to thank the
journal for permission to use that material here. We are most grateful to IBM

X Preface

for the support we have received for our research in knowledge systems and
Prolog, and for the resources that IBM has kindly provided for the preparation of
this book. Finally, we thank the people at Addison-Wesley for being so well
organized and for their good advice.

Michael McCord, Adrian Walker, Walter G. Wilson
IBM Research Division

T. J. Watson Research Center

Yorktown Heights, N.Y.

John F. Sowa
IBM Systems Research Institute

Thornwood, N.Y.

Contents

Chapter 1.
Knowledge Systems: Principles and Practice 1
1.1 Whatis a Knowledge System?o 2
1.2 From General to Specific, and Back Again 5
1:3' Prolog and Logic Programming «.:csssssmeswssmss sosmesioshmssmssmisas 8
1.4 Knowledge Representationoouviiiennennonnennenneennnnn, 10
1.5 Getting the Computer to Understand English 14
1.6 Some Trends in Knowledge Acquisitioncoiviinininnn . 17
1.6.1 Learning by Being Told iR LI 18
1.6.2 Learning by Induction from Examples 20
1.6.3 Learning by Obscrvation and Discoveryccocovn... 22
1.7 SUMMALY 055550 desdiedidaiis mes@ssGuisas@asmsa@esmasaessds i inms 23
Chapter 2.
A Prolog to Prolog 27
2.1 Features of Prolog . ..o oot e e 27
2.1.1 ‘Nonprocedural ProOGEAMMING: s« weswosmgsmvsmasmns swgimsowsis 28
2:1:2 Factsiand Predicates wicnismesmismismesGeamesmes 5ot mssmsshesm s 29
2.1.3 Constants, Variables,and Rules iiviun.. 30
2.1.4 Goals and Backtrackingt 35
2:1:5 Prolog/Structures ::wismussmiimsaessiinis®ismis B pmis RIS MEGH 3 37
2.1.6 Built-in Predicates 39
2.1.7 The Inference Engineoonininninin s, 41
22 PUTE PROLOR s s miss sy mvasoayies o s bme s ase 4saaisssmssaisndisEiiwasmas 43
2.2.1 Solving Problems Stated in English 43
2.2.2 Subtle Propertiesof English i 47
2:2:3 Representing Quantifiers: «:swsemsswivmeswisnssmesmismismismesg 52
2.2.4 Choosing a Data Structureoiuunieinnininnnnnnenn . 55
2.2.5 Unification: Binding Values to Variables 62
2:2i6 List=Handling Predicates ..:s:onspmsimesnvsmssmosmsspsswenmssns 67

xii Contents

2.2.7 Reversible Predicates i 72

2.3 Procedural Prolog o :urssvosmssmes ous woms s ams o s s e s maswns e as e 77

2.3.1 Backtracking and CULS s cemcsmssem s omssmsomesmosmessssemssnssns 77

2.3.2 Saving Computed Values 82

2.3.3 Searchinga State Spaceiiiiiiiiiiii i 86

234 INPULLOUEPUT o ais s oon s wom s s gimm s s oo ma s s wis o a1w 5w 6 00 0 8t 89

2.3.5 String Handling: :siuinisenismssmsomasmarsos o rEismasimesGissss 91

2.3.6 Changing Syntaxcuiiuniiniiinainieinneaia. 94

2.4 Performance and Optimizationiiiiiiiiiiiiiiiien.. 96

24.1 Choosing an AlZOrtRMI ;.o oswcsvmimesmesmesmnsinsemiomsonm 96

2.4.2 Generate and Test cvuwiiwiswismessmeswaamasBosansmaienssisan 100

2.4.3 Reordering the Generateand Test 102

2.4.4 Observationsonthe Method 104

EXCICISES s mrusos s mos s sm s ava s @ s o 55 o5 5708 6985 500 5 856 8 60§ 5 55 16 5 998 & 89 % 105
Chapter 3.

Programming Techniques in Prolog 119

3.1 How to Structure Prolog Programsy 120

3.1.1 Logic Programming Development Process 120

B2 DECIAFANIVESTIIE civnmivomvumsnmos mas s mim e won s & wio s 560 % 0 5 oo 121

303 Data Representation: ::um s e see s eme s a5 s 56566 66 5% § 50 4 575 5 46 135

3.1.4 Structuring and Verifying Recursive Programs 149

3.1.5 Control SITUCIUTES ..ottt it iae et et ene e 157

32 Techniques and Examples: «::xoswnswseswsimsemissiimessmsmsssnssanss 168

3.2.1 Metalevel Programming ..., 168

3.2.2 Graph Searchingiiitiii i i 190

3.23 Balanced Treesooiinniii it i 206

31.2.4 Playing Games and Alpha-beta Pruning 213

3.2.5 An Inventory Control Exampleo 222

3.2.6 Delayed Evaluation ittt 235

3.3 Summary of Prolog Programming Principles 244

EXCICISES 555 a0 viiin.aismisas@essosmussmon@issssmas® s Waer@ssnisme 245
Chapter 4.

Expert Database Systems in Prolog i 249

4.1 Knowledge Representationand Useo, 251

4010 Rules ..o e R e 251

4.1.2 Frames e 254

413 LORIC rcismssmeimesmaimes oa i oies e s men®ssmas mio@ i amssmins 258

A 14 SUMMATY oottt e e 262

4.2 Syllog—An Expert and Data System Shell 262

4:2.1 Introduction to Syllog = .:ssisvivwsswismssvssveimvsmmrsmasmess 263

4.2.2 A Manufacturing Knowledge BaseinSyllog 2617

4.3 Inside the Syllog Shell e 281

4.3.1 A Simple Yet Useful Inference Engine ., 281

4.3.2 Generating Uscful Explanations!. B R AR RS I MR ARG EE 295

4.3.3 A Simple Prolog to SQL Compiler 304

4.3.4 Summaryof Syllog B v 5 10403 ¢ 5o 505 5 6 w0 000 0 oL 6 320

4.4 Checking Incoming Knowledgeo i, 322

4.4.1 Subject-Independent Checking of Individual Rules 323

Contents

4.4.2 Subject-Independent Checking of the Knowledge Base
4.4.3 Subject-Dependent Checking of the Knowledge Base

4.5 SUMMATY .« .ottt ettt e et e e et e e e e e e
ERBICISEE - v oo 645 50 00 5 o0 0 o s 0 5 3 508 e 6 2 1 0

Chapter 5.
Natural Language Processing in Prolog

5.1 The Logical Form Language
§5.1.1 TheFormation Rules fof LFLcncequsmosnmscmssmuesmenmes
5302 Verbs uswasimvotiaos mas vssomas oosaiss s Sai@ss iissoosoqssmsss
5:0:3 NOUMS: oo s55 56555 5055 5of 558 655005 oufi 55 0 Fam S e Buils s s 3 i 5500
5.1.4 Determinersttt
515 Pronouns
5.1.6 Adverbs and the Notion of Focalizer
5:1:7 AJectiVeS: i vumsswss sy g mesmassums o s @ as e s @es WaiaEEin i
5:1.8 PrepositionS) « s s 55,965 €5 @09 8,055 8 56/ F ThF T3 ia W88 nm s dumes o

5.4 Syntactic Constructions

5.5 Semantic Interpretation

5.1.9 ConJUnCLIONSttt et e
5.1.10 Nonlexical Predicatesin LFL
S. 1011 The IndeéXing OPErator . cu v s s vmesinnsansgsmss s s w955 6 8 6 8

5.2 LogiC:GrammMArs :q: oo s vewaisesaiois 8450 ms6%ma6m 5 GE s @SS Ea 8 voRE

5.2.1 Definite Clause Grammarsc.viiinmrnennon. ..
5.2.2 Modular Logic Grammars ...,

5.3 Words ...

5:3L TOKBHIZINE < snvsprowssmmengasmmsgmssmas ™ BE5mes 0 isaMss@EsEs
532 Inflections «vnmoumsasms s emss s om s W is GaBEE 55 e had o B e s o ba
5.3.3 Slot Framescouuieii. [P
5.3.4 Semantic Typesooniiiiiii i I
5.3.5 Lexical Look-up
5.4.1 Verb Phrases, Complements, and Adjuncts
5.4.2 Left Extraposition
543 NounPhrases
5.4.4 Left-Recursive Constructions
5.5.1 The Top Level
5.5.2 Modification
553 Reshaping
5.54 AOne-Pass Approach

5.6 Application to Question ANSWEringuiii....

5.6.1 A Sample Database oo
5.6.2 Setting: UPAHGLEXICON o vnmwosmssmgsnmssmas smspmassazamesms
5.6.3 Translation to Executable Form
5.6.4 A Driver for Question ANSWeringoouuiueo.....
EXErCISES . ..o

Chapter 6.
Conclusions

Appendix A.
How to Use IBM Prolog

A.l A Simple Example U

xiii

325

327
331
332

337
339
339
341
343
343
350
351
354
356
357
359
360
362
363
370
380
380
381
384
386
389
390
391
398
403
407
413
413
417
423
432
433
434

436

441
445
448

451

455

L

xiv Contents

A.2 Detailed Programming of a Metainterpretercoovuuenvinnn... 459
A.3 Testing the Mctainterpreter at the Terminal 474
A.4 IBM Prolog Input and Qutput Under VM cooiiiiint, 482
A.5 IBM Prolog and the VM Operating Systemo .. 485
A.6 Tailoring IBM Prolog Under VM i 486
A.7 Using IBM Prolog with Edinburgh Syntax 488
A8 Prefixes and Clause Names: : o ivvusmmssmssmssmesmessmssmas s assmes s 490
A.9 Modules and Compilation R 6 B 8 R B B €8 E S R 491
A.10 Types, Expressions, and Sets iiin it 493
A.11 IBM Prolog Under MVS ... i et i 494
Appendix B.

Logical Basis for Prolog and Syllog 499
B.1 Model Theory Provides the Declarative View PTH B i § RES B 499
B.2 Logical Basis for Prolog without Negationc.c0uvvnn. 501
B.3 Logical Basis for Prolog with Negationcco0iivnnn. o, 503
B.4 Further Techniques for Interpreting Knowledge 508
Bibliography 513
Author Index 523

Subject Index 527

1

Knowledge Systems:
Principles and Practice

Adrian Walker

“The object of reasoning is to find out, from the
consideration of what we already know,
something clse which we do not know.”

Charles Sanders Peirce, Fixation of Belief.

As noted in the Preface, a knowledge system is an expert system, or a program
that understands a natural language such as English; it may also be some
combination of the two, and it may make good use of a database management
system.

The rate of publication of papers about knowledge systems is now higher
than ever before. There are survey articles in computer science journals, in
popular computing and scientific journals, and in the general press. The volume
of research publication is also unusually high. Expert systems have so far proved
their worth in structure elucidation in chemistry, in helping to find mineral
deposits, in helping technicians in hospitals, in suggesting maintenance
procedures for locomotives, and in many specialties for which we do not have
enough human experts. The commercial potential of the subject is being
recognized. ‘

In a period of such intensive activity, it can be healthy to step back from the
day to day excitement of new uses of knowledge systems, new research results,
product announcements, and the formation of new companies in the area of
knowledge systems. This chapter describes some of the interplay between
principles and practice in knowledge systems; we argue that it is very fruitful to
combine principles and practice closely, and that logic programming (in

2 Knowledge Systems: Principles and Practice

particular Prolog) is a strong candidate for bridging the traditional gap between
the two. We set out a particular view of where work on expert systems and
natural language processing has come from, what is being done now, and of some
trends for the future. Because of the scope of the subject, our view necessarily
focuses on just some of the trends and achievements.

What is a knowledge system, an expert system, a natural language
understanding program? The name expert system has been applied to many
diverse programs. So in the next section we describe the properties that we think
such a system should have. Section 1.2 sketches some central issues in expert
systems from a historical point of view. In Section 1.3 we outline the role of
Prolog and logic programming in expert systems. In Section 1.4 we note that an
expert system is only as good as the knowledge it contains, and we describe some
methods of knowledge representation. Section 1.5 outlines some of the methods
used in getting a computer to understand a natural language such as English.
Then in Section 1.6 we describe some trends in knowledge acquisition. Section
1.7 is a summary.

1.1 WHAT IS A KNOWLEDGE SYSTEM?

Every program contains knowledge about some problem. A payroll program, for
example, has knowledge about pay rates, deductions, and tax schedules. It also
includes “‘common sense” knowledge about business practices and the number of
hours in a week or days in a month. What makes knowledge systems different
from conventional programs is that they represent the knowledge in a
higher-level form. Instead of encoding knowledge in low-level statements, they
store it in a knowledge base of rules and facts that stay close to the way people
think about a problem. This book presents the two major kinds of knowledge
systems:

@ Expert systems: problem-solving systems that reach expert or at least highly
competent levels of performance.

= Natural language systems: systems that converse with people in their native
languages at a level that approaches the generality and flexibility of ordinary
discourse.

Besides introducing these subjects, the book goes on to present detailed methods
for designing and implementing such systems in Prolog, and for using them when
they are completed.

What distinguishes an expert system from a conventional program is not just
its expertise, but the way that the expertise is stored and processed. A payroll
program, for example, certainly has more expertise about tax rates and
deductions than most people, but it applies the expertise in a rigid, inflexible
way. Furthermore. it cannot explain its knowledge or answer questions about its
use: an employee who believes that the wrong tax rate was applied cannot ask
the payroll program why it made a certain deduction. An expert system behaves
more like an intelligent assistant. It can apply its knowledge in flexible ways to

1.1 What is a Knowledge System? 3

novel kinds of problems. Whenever it reaches a conclusion, the user can ask how
that conclusion was reached and what rules were used to deduce it.

Since knowledge about any subject is constantly growing and changing, an
expert system should be flexible in integrating new knowledge incrementally into
the knowledge base. Indeed, the expert system should help the designer to
translate knowledge into rules and facts. We would also like it to display its
knowledge in a form that is easy for us to read. If we are to take actions that can
have serious consequences in the real world, based on advice given by an expert
system, then we would like the system to provide explanations of its advice
(Michie 1982). Because the expert knowledge that people have is often
incomplete and only partly understood, we would like an expert system to be able
to reason with judgmental or inexact knowledge. This knowledge may be
declarative (about the nature of a task), procedural (about ways of doing the
task efficiently), or both.

Although all expert systems encode their knowledge in a more accessible
form than conventional programs, many of them have complex notations that
can only be used by a trained computer scientist. There are two complementary
methods of making it easier to put in knowledge and to get advice:

s make the notation closer to English (or another natural language)

a make the system able to work effectively when given only declarative
knowlédge about the nature of a task.

Generally, we can make a system easier to use by improving its ability to
handle English, by making it so that the knowledge we give it can be more
declarative, or by doing both. We can choose how far we go along the path to
full English. In this book we shall show a limited approach in Chapter 4, and a
full English approach in Chapter 5.

In an approach described in Chapter 4, we work with sentence forms on the
screen of a computer terminal. Sentence forms consist of any words in English
(or any other natural language) together with variables that can be filled in by
other words. We give meaning to the sentence forms by using them to write
rules containing our knowledge about a subject. The system remembers the
sentences that we type in. When we want to ask a question, the sentences the
system knows about are presented as a grouped menu, with the sentences that
are most important shown in the first group. We pick one sentence; then we
optionally modify some of the variables to make the sentence correspond to our
question. (If we want to be able to ask the same question using two different
sentences, then we must tell the system that the two sentences mean the same
thing.) This approach has the disadvantage that it is somewhat restricted. It has
the advantage that it works with any natural language or jargon, and that there
is no need to construct a dictionary or a grammar beforehand—we simply type
in the knowledge and use it. Chapter 4 describes a knowledge base about
manufacturing planning that is built in this way.

In Chapter 5 we show how to develop a parser and a semantic interpreter
that come to grips with the full richness of natural language. Natural languages

4 Knowledge Systems: Principles and Practice

allow people to express information in different forms to emphasize different
points or just to allow some stylistic variation. All of the following requests, for
example, ask for the same information:

What is Sam's age?

How old is Sam?

Please print Sam's age.

| would like to know how old Sam is.

A general language handler can parse each sentence to determine its syntax and
then build up an internal logical form that describes the meaning. Appropriate
rules of inference can relate the different logical forms. They would show, for -
example, that age is a measure of the degree of oldness. Chapter § presents a
general method for mapping ndtural language into a logical form and handling
problems of this sort. The methods of Chapter 5 are of value not only for
creating natural language interfaces to expert systems, but also for other natural
language applications, such as machine translation (McCord 1986).

We mentioned that if a system is to be easy to use, it should cope with
sentences that are easy to read, or that are in full English. There is another
dimension to ease of use. We also want a system to reason with declarative
knowledge, so that rather than telling it how to do a task, we can just tell it what
the task is. This mecans that, internally, the system must be able.to derive
enough procedural knowledge to execute the declarative knowledge both
correctly and efficiently. We can choose how far we go along the path to direct
use of declarative knowledge. This is discussed in Chapter 4 and in Appendix B
It’s worth noting that knowledge systems can be viewed according to the extent
and manner in which they separate declarative and procedural concerns. For
example, in Kowalski et al. (1988) some research projects in

w legal reasoning,

s capturing common sensec general knowledge together with a broad library of
specific knowledge to analogize to,

® structuring a large procedural knowledge base, and

a adding highly efficient support for rules inside a relational database system.
are compared from the point of view of use of declarative and procedural
knowledge. It appears that this point of view is important in the management of
knowledge in large software projects.

In summary, a full-scale knowledge system should, be able to do the
following tasks:

e Solve or help to solve important problems that would otherwise require the
services of a human expert.

s Integrate new knowledge incrementally into the knowledge base.

w Help the designer to elicit, organize, and transfer knowledge.

s Display knowledge in a form that is easy for people to read.

