A
PR
B SILICON
AND THE
ART OF
AUTOMATIC
MICROCHIP
DESIGN i

RONALD
F. AYRES

g

UN

8565905

VLSl

silicon compilation

and the art
of automatic microchip design

RONALD F. AYRES

California Institute of Technology
Information Sciences Institute

i

E8565905

il

Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

Ayres, Ronald F.
VLSI: silicon compilation and the art of automatic
microchip design.

Bibliography: p.

Includes index.

1. Integrated circuits— Very large scale integration
—Design and construction. L. Title. II. Title: V.L.S.I.
TK7874.A97 1983 621.381'73 82-23177
ISBN 0-13-942680-9

Editorial/production supervision and
interior design: Mary Carnis

Cover design: Diane Saxe

Manufacturing buyer: Gordon Osbourne

Dedicated to

Giorgio Ingargiola and programs without roses, Judy and cats, Dick Suchter,
Dave Plumer, ING, DQP, WLL, the “KL’, memory location 80 on the IBM/360 Mod 44,
computer memory references both legal and “‘illegal”’,
and all the op-codes that will ever be “‘reserved to DEC.”’

©1983 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 87 65 4 3 2 1

ISBN 0-13-942L80-9

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall Canada Inc., Toronto

Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

Freface

This text provides an introduction to the emerging field of silicon compilation and
the art of automatic chip design generation, perhaps the most exciting area in VLSI chip
design today and for some time to come.

This text is intended to give the reader a foundation in techniques and concepts
with which to create, understand, and explore silicon compilation. The text can serve as
a university textbook for the majority of a one-year graduate course in VLSI computer-
aided design, as a handbook for designers of computer-aided design systems, and as a
case study of a large software application.

Silicon compilation helps resolve today’s acknowledged ‘‘hardware crisis’’: the
great difficulty encountered in the generation of new, custom integrated circuit micro-
chips. This difficulty has become a ““crisis’’ only because the physical technology readi-
ly exists to produce wide varieties of very powerful and highly desired computational
engines. However, the greatest bottleneck involves the translation from the human
intent, a behavioral description of what the new chip is supposed to do, into the chip
‘“layout,”” a complete geometric representation from which these marvelous physical
technologies can readily produce reliable, working chips.

Any step toward the resolution of this hardware design crisis brings with it two
very important results. First, it brings a vast reduction in cost, and hence an increase in
the availability of products that make everybody’s life more pleasant. It widens pro-
foundly the applicability of these micro-chip technologies to facilitate even greater and
previously unimagined benefits to all of us. Second, it widens the scientific view of
information processing and the very character of information itself, by removing some of
the barriers that have provided artificial divisions in our ways of thinking, for example,
the great division between hardware and software. It brings us closer to a unified feeling
for information and its evolution.

The relative costs between the chip design process and the subsequent chip fabrica-
tion dramatically expose the design bottleneck. The design process produces a chip lay-
out and the fabrication process turns this layout into real chips. The design process can

ix

Preface

cost, for state-of-the-art designs, a few million dollars, and a year or more elapsed time
from the initial characterization of the chip (usually a short document specifying the
intended behavior for the chip) until a working design emerges. Once the design is com-
pleted (at which time it is a year behind the state of the art), the fabrication process even
for small-volume prototypes can cost well under $10,000 and take under a month.

How is it that we have become accustomed to such immense design costs? The
product of this process, a layout, is a picture consisting of about a million individual
shapes, all of which together must satisfy the constraints or “‘syntax’’ imposed by the
fabrication process. A single error in this maze of details often renders the entire chip
inoperative. Not only must this giant set of shapes satisfy the silicon ‘‘syntax,’’ but it
also must make the appropriate statement in this silicon language so that the chip will
perform as intended. In addition, the design must satisfy electrical constraints simply
because the whole technology is based on properties of electrical phenomena.

This text exposes ‘silicon compilation,”’ the art of automatic layout design gen-
eration, as a substantial solution to our hardware crisis. We who created silicon compila-
tion and introduced the term into computer science use the term *“silicon compiler’’ to
denote totally automatic translations from behavioral specifications to correct chip lay-
outs, just as the term ‘‘compiler’’ in software implies totally automatic translation from
high-level languages into machine languages. Human interaction is entirely optional, and
is limited so to affect in no way the behavioral correctness of the resulting layout.

Working silicon compilers have produced chip layouts in under one hour, from
behavioral specifications developed in under one week. These chips range from complete
microprocessors to special-purpose, application-dependent microprocessors. These sili-
con compilers are only the first such tools—design aids that implement the entire design
process automatically from behavioral specifications to correct layouts. They exploit
silicon’s native potentials without adopting the restrictions, inefficiencies, and ways of
thinking inherent with older technologies, like the PC-board place-and-route paradigm
adopted in ‘‘gate array’’ and *‘polycell’’ technologies.

A variety of semiautomatic techniques have emerged from industry and academia
which have tended toward isolated and/or partial solutions to limited, well-defined prob-
lems. Even complete solutions to subproblems, developed without considering the
overall compilation problem, very often render few, none, or negative improvements for
the overall chip, particularly when loose ends are left to manual, error-prone interven-
tion. This text, in contrast, emphasizes the overall problem and detailed solutions, some-
times even by using less-than-optimal solutions to subproblems, again, to show a great
flexibility and potential.

It is surprising perhaps that the effort required to provide complete automation is
actually considerably less than solving in a practical way a majority of subproblems in-
dependently, mainly because the compiler writer has complete control over the entire
automation. This of course facilitates more efficient solutions whose overall effect sur-
passes concentrated optimized local solutions.

The possibility of such complex uniformities also makes possible physical techno-
logies as yet unimagined, geared particularly toward use with silicon compilation; the
great degree of complexity supported by compilers facilitates new technologies which
might otherwise be out of reach to manual design. (We have seen recently that technolo-
gy has adapted to software compilers with the emergence of Pascal and LISP machines.)

The field of silicon compilation bridges the fields of electrical engineering and
software engineering. We find today in the domain of chip design the same kinds of
problems and attitudes that existed one or two decades ago in the software domain. In
both cases, chip and software designers have been faced with a rapidly growing base
technology, which has changed and is changing the relative costs of alternative ways of
doing business. The bottleneck ceases to be the limitations of the base technology, but
becomes instead the human limitations of formulating the design (layout or program).

Software compiler engineers have been and are faced with the question of how to

Preface Xi

make most effective use of the growing capacity of memory and speed. When software
compilers came to be, people began reluctantly to use them amid fears of losing efficien-
cy and control. Nonetheless, today these fears have nearly vanished, and large software
designers now ask not whether to use a compiler at all, but instead which compiler
(language) to use. Now, with the capacity of silicon chips continuing to grow very rapid-
ly, chip designers are faced with the same problem of how best to map human skills into
this generous silicon terrain.

We explore one silicon compiler in detail to provide continuity among the various
techniques and concepts shown. This silicon compiler, RELAY (REcursive Logic
ArraYs), was chosen because it is general purpose and illustrates many of the techniques
and concepts that apply to all kinds of silicon compilers. RELAY involves the capture of
behavior specified in terms of synchronous logic, its translation into an optimized dis-
junctive form, its simulation and translation into clocked PLA layout structures, its
placement and routing, and its electrical or performance modeling.

RELAY is also especially well suited to illustrate the wide and subtle variations
and optimizations afforded by the redistribution or reorganization of logic over the chip
area. The latter effect clearly exposes the novel flexibility and use of silicon compilers,
which renders them indispensible for all high-level design phases, including floor
planning—those phases where the majority of major headaches tend to focus in practice
because their resolutions are expensive.

The most valuable information derived from these efforts has been a collection of
techniques and new ways of thinking which facilitate the creation of these and other sili-
con compilers. These techniques and concepts form the bulk of this text.

In fact, these very techniques are applicable not only to silicon chips, but also to
technologies, some yet to be invented, which derive their function from specifications
rendered in terms of two (or three) dimensional layouts (pictures).

We do not cover in detail layout techniques which tend to be dependent on individ-
ual fabricators and physical technologies. We also do not cover the underlying physics of
microchips in general. Other texts cover these areas and provide the rigorous bases for
our abstractions. We resort, for example, to electrical properties only when they must be
taken into consideration. We focus instead on the software techniques used to generate
layouts of any kind, and to generate complete layouts of a more particular character.

We include a multitude of related programming examples; this is essential in order
to enhance confidence and a ‘‘can do’’ attitude, and to show all the essential details that
must be considered inevitably in any programming relationship with the computer. We
have chosen for this purpose the programming language ICL (Integrated Circuit
Language) which was developed especially for exploration into VLSI. ICL is appropri-
ate for use in this kind of text, primarily because many programming details (for many
applications) are handled implicitly by ICL. ICL does not burden us with most of those
programming details having nothing to do with VLSI (e.g., pointers, memory man-
agement, and various other awkwardnesses). In fact, ICL serves well as a clear formal
notation, useful in the way that mathematical notations are useful in math texts.

ICL notations are explained as they become parts of examples, so the reader can
make very practical use of the examples, at least in their understanding. In fact, all the
programming examples have been extracted from this text and run on the computer to
verify their correctness and to generate many of the illustrations. ICL is a complete
working language which has been used exclusively in the formulation and implementa-
tion of two complete silicon compilers, RELAY and BRISTLE BLOCKS, and has been
also used to service chip designers nationwide in providing exceptionally economical
chip fabrication from layouts.

The seasoned programmer may wonder if the simplicity of expression afforded by
this language carries with it a significant loss of efficiency. Surprisingly, empirical evi-
dence to date shows the opposite to be true, perhaps due in large part to the very direct
communication afforded by its human orientation.

Achnowledgments

This book was made possible in large part by a wide variety of people engaged in
many disciplines, both in the academic and industrial worlds.

For the courageous long-term and persistent presentation of fundamental principles
relevant to this subject matter, special thanks go to Dr. Frederick B. Thompson for
emphasizing the flexibility of computational linguistics, to Dr. Per Brinch-Hansen for
exposing the importance and pleasure of particularly clear program specification, to Dr.
Carver A. Mead for discovering a very straightforward and practical view of VLSI sys-
tems, to Dr. Tom Apostol for illustrating the ease and practicality of applying abstract
mathematical techniques to the widest variety of problems, and to Dr. Herbert Benjamin
for lending a boldly realistic view to the very nature of information itself.

More specific to this subject matter, the author is particularly grateful to David
Johannsen, Carver Mead, John Wawrzynek, and Charle Rupp for participating in the
growth of this field. David Johannsen in particular embraced silicon compilation the very
same day the author introduced this subject to an audience at Caltech. He has since
expanded and applied many of the early concepts directly to datapath chip architectures,
which had previously been proposed and manually implemented by Mead and
Johannsen. Carver Mead contributed, among other things, encouragement, excitement
and effective generalizations, so as to expand participation in this new field. John
Wawrzynek singlehandedly lashed together two early silicon compilers, RELAY and
BRISTLE BLOCKS, so as to render chip layouts that utilize some of the best abilities of
each compiler. Charle Rupp pursued the field by attempting to generate layouts from
pieces as small as individual transistors. These and other points of view together have
given rise to this very fertile field.

Also instrumental in developing the field were many fruitful discussions with Ivan
Sutherland, Jonathan Allen, George Mager, Walter Klein, Chuck Seitz, George
Lewicki, Ricky Mosteller, Telle Whitney, Juda Afek, Danny Cohen, Bernard Goodwin,
John Newkirk, Bob Matthews, Ed Cheng, and Paul Tyner.

xiii

Xiv

Acknowledgments

Of course, the importance of a working environment cannot be overemphasized.
The spirit and scientific resources of the California Institute of Technology, together
with the industrial participation afforded by the Silicon Structures Project, has provided
perhaps the most fertile of possible environments for this and other kinds of scientific
and industrial progress.

The guests from industry provided a secure sense of what people really do under
the stress of trying to get a chip out the door under a tight schedule, exposing the kinds
of computer tools embraced most fervently and the chronic bottlenecks experienced in
that endeavor. The academic spirit provided a timeless security entirely unencumbered
by hurried short-term business goals. Ivan Sutherland personally exemplified the best of
these two worlds simultaneously, providing truly down-to-earth information and
resources while maintaining the best of scientific integrity by providing an extraordinari-
ly open mind to ideas from all disciplines.

Another very important working environment is the USC/Information Sciences
Institute, providing among other things superb computing resources and very direct
introductions to the VLSI activities occurring nationwide within the research community
funded by the Advanced Research Projects Agency. It is remarkable and encouraging
that major industrial-grade services can be developed quickly and maintained securely
within such a delightful and free environment.

The author is indebted to Larry Seiler and Alan Paeth for providing a PLA layout
generation program and for providing the character fonts used in the illustrations, all in
their independent effort to produce a key debouncing chip for a VLSI design course.
Another person, whose name cannot be mentioned for obvious reasons, ‘‘magically”’
provided an abundance of computing time on one critical occasion. Also instrumental
have been the superb computers and software provided commercially by Digital Equip-
ment Corporation.

The dedication and illumination provided by the people at Prentice-Hall, the
anonymous reviewers of the manuscript, John Wawrzynek, Bernard Goodwin, and
George Lewicki have made it possible to accommodate the varied audiences whose dis-
tinct fields of interest are necessarily brought together in a text of this kind.

Special thanks go to Dr. Herbert Benjamin for encouraging the conception of this
book, and to my brother and sister Gary and Denise, and my parents Anita and Marx, for
providing the greatest support, dedication, and challenge over nearly an infinite number
of years.

8555905

Contents

PART 1

Preface

Acknowledgments

Introduction

INTEGRATED CIRCUIT LAYOUT

Integrated Circuit Layout and Their Creation

1.1 Layout Specification with Text, 10

1.2

Point Specification, 10

Layout Specification, 12

Our Simple View of Layers, 13
Complex Layouts, 14

Layout Variables and Displacements, 15

A Look at the NMOS Medium, 16

1:2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6

Units and Simple Design Rules, 16

The Primary Colors and Their Interactions, 17

Minimum Sizes and Minimum Separations, 17

The Tiny Role of Design Rules on Silicon Compilation, 18
More Abilities in the Domain of Silicon, 19

More Concise Notations and Programming Languages, 20

xiii

Contents

1.3

1.4

Basic Building Blocks: A Silicon Machine Language, 21

1.3.1 The Inverter, 22

1.3.2 Electrical Characteristics of an Inverter, 23

1.3.3 Inverter Layout, 25

1.3.4 A Variation on the Inverter: The NAND Gate, 28

1.3.5 Another Variation on the Inverter: The NOR Gate, 31

1.3.6 The NAND Gate versus the NOR Gate, 32

1.3.7 From the Champion NOR Gate to the Programmable Logic Array, 33

Efficiency in Layouts Formed like Crystals, 36

1.4.1 A Case for Wires, 37

1.4.2 Multiple Crystals, 38

1.4.3 The Heart of the Programmable Logic Array: The Programmable NOR
Plane, 38

Representation and Analysis of Layouts and Other
Information

2.1

2.2

2.3

24

2.5

2.6

The Three R’s of Computing, 47

2.1.1 The Role of Representation, 48

2.1.2 What Is a Good Representation?, 48

.3 The Expression of Synthesis Is Decoupled from Representation, 49
.4 A Proposed Representation for Layout, 50

5 Differences between Layout Specification and Representation, 50
6 Example of Examining the Representation, 51

Datatypes: The Heart of Representation, 51

2.2.1 A Clarification of Representation: Datatypes and Instances, 51

2.2.2 Five Major Classes of Datatypes, 52

2.2.3 Datatype Construction 1: Strings, Arrays, or Lists, 56

2.2.4 Datatype Construction 2: Records, or Cartesian Products, 59

2.2.5 More About BOXes and POLYGONS and the Role of Representation, 62
2.2.6 Roles of the Minimum Bounding Box (MBB) of a Layout, 64

2.2.7 The MBB of Polygons and Sets of Boxes, 65

2.2.8 Nested Type Expressions: An Example for Multipen Plotters, 71

The Type LAYOUT and Variant Types, 73

2.3.1 Type Construction 3: Variants, a Necessary Uncertainty, 73
2.3.2 The Type LAYOUT, 78

2.3.3 Examples of Layout Analysis, 79

General Orientations for Layouts, 84
2.4.1 Updating the Type LAYOUT and Its Associated Functions to
Accommodate Matrices, 88

Process Types and Generalized Plotting, 93

2.5.1 Accommodating More than One Plotter and Integrated Circuit Fabrication,
93

2.5.2 Type Constructor 4: Processes or Verbs, 93

2.5.3 Generalizing Our PLOT Procedure, 98

2.5.4 Layout Fabrication, 99

Other Representations for Layouts, 103

2.6.1 The Immense Costs in a Linear Representation, 104
2.6.2 Costs in Execution Time, 104

2.6.3 Costs in Memory, 105

2.6.4 Memory Sharing and Layout Regularity, 105

47

Contents

2.6.5
2.6.6
2.6.7
2.6.8
2,69

2.6.10

Example of Data Sharing: A 4K RAM, 105

Data Sharing and the Costs of Analysis, 107

Data Sharing in the Time Dimension, 108

Transferring the MBB Computation from Analysis to Synthesis, 108

Using the Disk: Introducing the \SWAPPABLE Operator for LAYOUTs,

114
Comparing the Linear versus the Recursive Representation, 117

2.7 Interactive Graphics: More Examples of Layout Analysis, 117

211
272
273
2.7.4
215
2.7.6
2.7.7
2.7.8
2.7.9

Overview of an Interactive Graphics Editor, 118
Creation of Objects Initially, 118

Viewing Parameters and Their Specification, 120

The Selection Process, 123

Modification Operators, 131

Keeping the User Informed, 133

Color in Interactive Graphics, 133

A Convenient Specification for ‘“Wire’” Polygons, 134
Pros and Cons for Interactive Graphics, 137

PART 2 INTEGRATED CIRCUIT BEHAVIOR

3 The Language of Synchronous Logic: A Behavioral
Specification

3.1 Overview and Essential Semantics of Synchronous Logic, 145

3.1.1
3.:1.2

3.13
1.4

3.1:5

Comparing the Two Kinds of Equations: ‘="’ versus ‘‘=next’’, 149
The Time Dimension in Computation Provides for the Tolerance of
Contradictions, 150

The Glitch: A Subtle Form of Race Condition or Contradiction, 151
How The ‘‘=next’’ Equations Suppress Race Conditions and Glitches,
153

Implementation in Silicon for the Unit Memory, 155

3.2 Formalizing the Language of Synchronous Logic, 157

3.2.1
322
3.2:3
324
325

The Datatypes and Operators for Synchronous Logic, 159

The Datatype SIGNAL, 160

Objective versus Subjective Data: The *‘@’* Operator in ICL, 162
Operations on SIGNALSs, 169

Operations on SIGNAL_EXPRs and EQUATIONS, 171

3.3 Synchronous Logic Simulation, 172

3.3.1
332
333

334

EQUATIONS and Order of Evaluation, 173

The SIMULATE Procedure, 182

Specifying the INPUT, OUTPUT, and DONE Parameters for
SIMULATE, 183

Summary, 189

4 A PLA Implementation for Synchronous Logic

4.1 Disjunctive Form for SIGNAL_EXPRs, 191

4.1.1
4.12
4.13

4.1.4

Implementation of DF in Terms of NOR_PLANESs and Inverters, 193
Translation from SIGNAL_EXPR to Disjunctive Form, 195

A Loose End: Representing TRUE in DF_EXPRs and in
SIGNAL_EXPRs, 200

A Possible Optimization for Free, 202

143

145

191

vi

PART 3

Contents

4.2 From EQUATIONS to PLA_LOGIC, 204
4.2.1 The Translation, 205
4.2.2 Symbolic and Functional PLAs, 208
4.2.3 A Closer Look at the Functional PLA, 211
4.2.4 What Follows, 214

Organized Synchronous Logic 216

5.1 Organized, or Hierarchical, Functional Specification, 216
5.1.1 Organized Specification for Synchronous Logic: LOGIC_CELLSs, 217

5.2 All LOGIC_CELL Notations, the Type NAME, and Cable Operators, 222

5.2.1 The Type NAME and Formation of Names, 222

5.2.2 The Use of NAME:s for Extracting Interface Signals from
LOGIC_CELLs, 223

5.2.3 Cable or Array Operators, 224

5.2.4 NAME:s and Sub-LOGIC_CELLs, 225

5.2.5 Subtle Rules of Grammar Necessary to Complete the Language of
LOGIC_CELL Specification, 226

5.3 Necessary and Sufficient Conditions for a Well-Formed LOGIC_CELL, 234
5.3.1 One More Condition for LOGIC_CELL Well-Formedness, 236
5.3.2 Toward Translation from LOGIC_CELLSs into Layouts, 244

SILICON COMPILATION 245

A Marriage between Layout and Logic 247

6.1 Layout CELLs: Conventions and Representation, 248
6.1.1 The PORT Datatype, 250
6.1.2 The Layout CELL Datatype, 251
6.1.3 Conventions 1 And 2: Port Ordering, 252
6.1.4 Convention 3: Interior Ports, 252
6.1.5 Examples, 253
6.1.6 A Basic CELL Algebra, 262
6.1.7 A Closer Look at Conventions, 265
6.1.8 CELL Conventions for Our Compilers, 269

6.2 The Fusion of ‘‘One-Sided’’ Cells, 271
6.2.1 Color Changes, 272
6.2.2 Utilities for Ports, 272
6.2.3 Sealing Power, 273
6.2.4 Placement of Sets of CELLs, 277
6.2.5 The Completion of Fusion for One-Sided Cells, 279
6.2.6 Translation from LOGIC_CELL to Layout CELL, 288
6.2.7 Example: A Very Recursive Rendition for a Counter, 289

6.3 Sketch of a Silicon Assembler and a Functional PLA, 291
6.3.1 Tiny Cells, 293
6.3.2 Conventions for Tiny Cells, 294
6.3.3 “‘Micro’’ Wiring: Cell Abutment and the \TOWER Operator, 294
6.3.4 Policy about Vertical Lists of Cells, 296
6.3.5 A Powerful Fusion Operator that Affects SIGNALS, 296
6.3.6 A High-Level Specification for Flexible NOR-Gate Cells, 298
6.3.7 A Power Sealant, 299
6.3.8 “‘Silicon Quakes,’’ Stress, and Fault Lines, 300
6.3.9 Construction of a PLA, 308
6.3.10 Two-Dimensional Hardening, 310

Contents vii

Reorganized Logic and Its Effects on Layout 315

7.1 LOGIC_CELL Optimizations: Removing ‘‘Trivial’’ Equations, 315
7.1.1 Manipulation of Logic Variables: INDIRECT and \FRESH, 316
7.1.2 Setting the INDIRECT Field of a SIGNAL, 318
7.1.3 Removing Trivial Equations from a LOGIC_CELL, 319

72 Interface Considerations: The Operator \STANDARDIZE in \FRESH, 323
7.2.1 Another Optimization: \MINIMIZE_OUTPUTS, 328
7.2.2 Another Optimization: Removing Unclocked Equations, 332

7.3 Hierarchy Edit Operations, 335
7.3.1 Basic Edit Operators, 336
7.3.2 Effects of the \PURE_CLOCK Operator, 340
7.3.3 Electrical Performance and the \PURE_CLOCK Operator,344

7.4 Localizing the Application of Edit Operations, 346
7.4.1 Example: Editing the Light-Dimmer LOGIC_CELL, 355

More Intimate Cell Fusion: Four-Sided Cells 367

8.1 Why Even Consider Four-Sided Cells: Dynamics of Interconnect, 367

8.2 Four-Sided Cell Conventions and the Introduction of ‘‘Corners’’, 370
8.2.1 General Policy about Fusion for All Cells, 370
8.2.2 Corners: A Representation for Communication Needs, 372

8.3 Overall Program Structure for the Fusion of Four-Sided Cells, 376
8.3.1 The ABUT Operator: The Lowest-Level Fusion Operator, 376
8.3.2 Using ABUT Together with ROUTE to Gain the Effect of \PACK, 379

8.4 The ROUTE Operator, 380
8.4.1 Scan-Line Implementation for ROUTE, 382
8.4.2 Assurance of Complete Interconnect, 388

8.5 CONS: The Complete Fusion of Pairs of Cells, 389
8.5.1 CONS Has Choices, 389
8.5.2 The Two Roles of CONS, 392
8.5.3 CONS Takes in Four Parameters, 392

8.6 CELL 4: Implementation of a LOGIC_CELL in Four-Sided Cells, 394
8.7 Satisfying the Final Set of External Needs, 398

8.8 Completion via the Introduction of Pads, 400

Electrical Modelling 406

9.1 Resistance, Capacitance, and Time, 407

9.1.1 A Linguistic Type Distinction: The PRIVATE Type Construction, 408
9.1.2 The Type TIME, 411

9.2 Model for Electrical Islands: The Type LOAD, 412
9.2.1 Simplified Model for Electrical Islands, 413
9.2.2 Each LOAD Imposes a Delay Time, 416
9.2.3 Connecting LOADs Together, 417

viii

Contents

9.3

94

9.5

9.6

Logical Dependencies: The Type NODE, 418
9.3.1 Incorporating the Electrical Model into the Layout CELL Type, 421
9.3.2 The CELL Abutment Process, 425

Model for Clocks, 440
9.4.1 Clocks Depend *Artificially’” on Other Signals, 442
9.4.2 Clocks in a CELL, 445

The Abutment Process Grows the Electrical Model, 447
9.5.1 Connecting Corresponding PORTS, 448

9.5.2 Connecting the Clocks, 448

9.5.3 NODE:s Isolated Due to Abutment, 448

9.5.4 Final Step in ABUT, 451

Recursive Electrical Simplification, 451

9.6.1 Simplification Occurs in \FRESH on DEPENDENCIES, 452

9.6.2 The Full Plural Dependencies \ FRESH Operator and Compaction, 456
9.6.3 One More Detail: A\COMPACT for CLOCKS, 457

9.6.4 Completeness of Simplification, 458

9.6.5 Reporting the Electrical Performance of a Chip, 463

9.6.6 Some Results, 467

Epilogue 469

Bibliography 472

Index 473

Type Definition Index, 476

Function Definition Index, 476

Introduction

The explosive progress occurring in integrated circuit fabrication has resulted in a
doubling of circuit density about every two years. Increased circuit densities attract cir-
cuits of increased complexity. This progress makes possible today’s single-chip
microprocessors and large memories. This progress also brings great increases in the
sheer complexity involved in the design process. This text introduces compilation as a
means of dealing with this increased complexity, a means long standing in the software
domain, where enormous complexity first emerged as a serious problem.

The creation of an integrated circuit proceeds in five basic steps. The creators
begin by drawing up a functional specification. They then formalize that specification
and perform simulations to build their confidence in its correctness. The major task fol-
lows as they translate the desired behavior into a two-dimensional language of silicon
where implementation appears as very complex sets of intricately overlapping shapes.
They send these sets of shapes, together called a layout, to a silicon foundry and receive
a large number of chips in return. The creation is completed as they test and package
each chip.

The major cost arises in the translation from the formal functional specification
into a two-dimensional layout. Typically, a human translator creates pieces of layout
with either paper and pencil or computerized graphical editors. Extreme care must be
taken in this process, much greater than the care required for software development
because the turnaround time and the cost for a run (chip fabrication) is very expensive.
The tedium involved in manual layout makes this process very error prone. Even a com-
puterized graphical editor admits anything the designer draws and thus ignores the
inherent syntax or constraints imposed by the two-dimensional language of silicon.

To verify adherence to silicon constraints, software has been developed which
checks layouts prior to their fabrication on silicon. Some programs look at layouts and
flag certain kinds of geometric violations. Other programs try to recreate the schematic
representation directly from the layout. These techniques provide for early error detec-
tion and thus cut down on the number of silicon fabrications required to debug a layout.

ANATOMY OF A
SILICON COMPILER

Introduction

However, such programs cannot catch all kinds of errors. Somebody still has to produce
the layout in the first place.

This hardware development technique contrasts current software development
techniques. On the one hand, programmers have compilers that translate high-level
specifications into machine language. On the other hand, layout designers have decom-
pilers, programs that read the silicon language and try to reconstruct higher-level
descriptions.

Decompilers are difficult to create because they must accept all possible expres-
sions in the silicon language, including all tricks of the trade. All design rule checkers,
for example, either do not flag all errors, or actually flag many perfectly correct situa-
tions as though they were errors.

A compiler, on the other hand, is much easier to create; it has only to accept a
well-defined formal language. The only requirement of such a formal language is that it
capture the domain of digital behavior.

The layout generated by a working silicon compiler is guaranteed to be correct
with respect to both the functional specification and the constraints of the silicon
language. Thus, the compiler users (e.g., layout planners) are freed to concentrate on
more productive tasks. They can try various architectures and quickly weigh the trade-
offs among various layouts and timing proposals. They can detect bottlenecks and
choose to lay these out manually. In analogy, software designers hand-code those rou-
tines that consume much of the computer resources.

Even though the layout generated by a silicon compiler may consume more area
than a layout generated manually, there are two factors that encourage the use of silicon
compilers. First, in tomorrow’s technology, we may ultimately have 100 times the densi-
ty available today. This means effectively 100 times today’s area and perhaps 100 times
today’s speed. Software compilers gained acceptance when available memory and speed
rendered unprofitable the human effort required for machine language coding. The same
applies to the silicon design effort.

Second, in today’s technology, one can buy a full microprocessor on a chip; how-
ever, the external logic required to employ such a chip in a system can require many
more chips than the microprocessor chip, particularly if the external logic is implement-
ed in commercially available SSI or MSI chips. The minimal design time associated
with a silicon compiler makes profitable the creation of a single chip to implement the
external logic. Implementing many SSI or MSI chips in one custom chip reduces the cost
of PC-board manufacturing, a particularly attractive cost reduction for high-volume
operations.

There are two focal points of concern in a silicon compiler. These are readily apparent
to users of such a compiler:

1 The source language: the language in which the user specifies the desired func-
tion, or behavior, to be performed by the new integrated circuit chip.

2 The target language: the capabilities of silicon, utilized in a very complex
two-dimensional color picture called a layout.

The quality or usefulness of a silicon compiler is measured by:
1 The ease of behavior specification afforded by the source language

2 The efficiency in use of silicon area and the operating speed of the finished
chip

COMPARING SOFTWARE
AND SILICON
CONSTRAINTS

Comparing Software and Silicon Restraints 3

The first of these two considerations is perhaps more important and overlooked
more. Since the birth of integrated circuit technologies, designers have had direct access
to the target language, and have been most concerned with efficient use of the silicon
resource.

However, the ultimate value of an integrated circuit chip is measured by how well
it solves a particular problem, usually within a larger system. Even the most efficient
chip loses substantial value if it performs a service that mismatches the need within the
system. The most efficient chip is utilized inefficiently as the system designer has to
remold the system and introduce new chips around the given chip, so to accept the ser-
vices provided by the given chip.

Thus, integrated circuit chips designed with tunnel vision focused only on silicon
efficiency serve merely to pass the buck, or inefficiency, off into the overall system
within which it ultimately resides.

In contrast, a chip designed with the particular application foremost in mind can
afford some silicon inefficiencies if its role within an overall system matches the
system’s needs very closely. The design of such functionally optimal chips occurs pri-
marily not in the domain of silicon, but in the domain of possible behaviors or functions.
The “‘source language’” of a silicon compiler covers precisely this high-level domain.

Perhaps the most innovative progress in the field of silicon compilation revolves
around the design of the source language. While there exist many languages capable of
representing behavior, for example, nearly all software programming languages, a
source language for silicon compilation must:

1 Provide for direct specification of behaviors that are supported most profitably
in the native silicon (e.g., parallelism)

2 Simultaneously provide an overall integrity so that the language persists in
being a language of behavior, as opposed to merely a language of layout

geometry

The overriding importance of the source language is clearly evident today in the
software domain. For some time now people have based decisions concerning the choice
of a software compiler on the source language supported by the compiler, as opposed to
the efficiency of the code it ultimately produces in the target (machine) language. Con-
cern about the efficient use of inanimate resources takes a backseat to human conveni-
ence when the entire effort is considered realistically as a whole.

Software and hardware revolve around the same basic concern: The software designer
lays out a one-dimensoinal array of memory, whereas the integrated circuit designer lays
out a two-dimensional area of silicon. In each case, various constraints must be satisfied
to obtain a working product. In addition, both efforts involve lots of modification.

There are some fundamental differences between the constraints of software and
hardware. For example, GOTOs in software implementations cost only the memory
required for the GOTO instruction itself. The distance between the location of the
instruction and the target address plays no role in either execution time or memory con-
sumption. In contrast, a silicon GOTO requires area for the *‘wire’’ connecting the two
locations. A longer wire consumes more area and more execution time. Furthermore, a
wire in silicon has to avoid obstacles in order to avoid unwanted short circuits. A
software GOTO has no obstacles; it does not have to dodge a certain set of words in
memory.

Another difference between software and silicon concerns the different layers
required in silicon. A signal in silicon may be represented on any one of several layers.

