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Preface

Problems. associated with excessive foaming occur in a surprisingly wide
range of situations. Development of suitable antifoams has therefore been a
necessity for the successtul solution of foaming problems in industries as
different as textile dyeing and detergent manufacture. Arguably, the problem
of controlling excessive foam 1s generally of equal importance to that of
generating stable foams. Yet this problem usually receives scant attention
in the few textbooks that deal with the subject of foams. It seems timely,
therefore, to redress the balance and devote a text exclusively to the subject
of defoaming.

In many areas of surface and colloid science, the sheer complexity of
phenomena often means that technology has actually led scientific under-
standing. The development of antifoams involving the interaction of one
disperse phase (gas) with at least one other disperse phase (emulsion droplets
or particles) 1s perhaps such an area. By including a chapter in this volume
concerning the current theoretical understanding of the mode of action of
antifoams, 1t 1s hoped that some of the association of the subject with the
mysterious arts will be dispelled.

In many cases, the selection of an antifoam that will adequately control
the foam is only the beginning of a solution to a foaming problem. Attendant
considerations include the amount of antifoam required, the state of disper-
sion of the antifoam, and the possibility of the antifoam interacting adversely
with some aspect of a process. These considerations may often be of ov-
erriding importance and may therefore affect the selection of the antifoam.
They are also usually specific to particular applications. For this reason the
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volume is divided into chapters concerning different industrial applications
of antifoams so that detailed descriptions of the problems and solutions spe-
cific to given industries may be dealt with. Not all such applications are
covered in this one volume, but a sufficiently wide range is included to give
some 1ndication of the appropriate approaches for any foam control problem.
Also, a measure of coherence 1s maintained throughout the book despite the
varied nature of the industries considered so that nomenclature and defini-
tions of terms are consistent.

This book would not have been possible without the timely contributions
of the various authors. Their patience in enduring the many editorial changes,
which a volume such as this entails, is gratefully acknowledged. Finally,
gratitude 1s due to Unilever Research for the provision of secretarial assis-
tance which greatly facilitated the preparation of this volume.

P. R. Garrett
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. INTRODUCTION

This chapter attempts a complete review of the various mechanisms pro-
posed for the action of antifoams over the past half-century. It is a feature
of this subject that these mechanisms, although plausible, are often specu-
lative. Thus, unequivocal experimental evidence is often lacking. Indeed,
the full theoretical implications of proposed mechanisms are also often not
fully developed. In the main, all of this derives from the extreme complexity

h"i._
-

exhibit complicated hydrodynamlcs involving the distinct rheology of air-
liquid surfaces and, for thin films, colloidal interaction forces. The nature
of the foam film collapse processes which are intrinsic to a foam are still
imperfectly understood.

Antifoams are usually hydrophobic, finely divided, insoluble materials.
Their presence theretore further complicates the complexities associated with
foam. Indeed commercial antifoams for aqueous solutions usually consist of
hydrophobic particles dispersed in hydrophobic oils. The action of such
antifoams concerns the effect of a dispersion (of antifoam in foaming liquid)
of a dispersion (the antifoam) on yet a third dispersion (the foam).

Theories of antifoam mechanism appear to fall into two broad categories:
those which require the antifoam to be surface active at the air-liquid sur-
faces of the foaming liquid, and those which do not. Theories which require
the antifoam to be surtace active associate antifoam behavior with an effect
on surface tension in the foam films which leads to film rupture. Theories
which do not require the antifoam to be surface active usually concern the
hydrophobic nature of the antifoam. They suppose that dewetting of anti-
foam entities in foam films produces capillary instabilities which lead to film
rupture.

The chapter 1s divided into four sections. The first concerns an outline
of the main processes which are believed to contribute to the stability of
foam films in the absence of antifoam. The second examines the relationship
between antifoam effects and surface activity of the antifoam. The third
section concemns inert hydrophobic particles and capillary theories of anti-
foam action in aqueous solutions. The last section concerns the mode of
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FIG. 1 Foam structure.

action of the mixtures ot hydrophobic particles and oils which form the basis
of many of the commercial antifoarmn concoctions proposed for aqueous foams.

II. THE STABILITY OF FOAMS

Betore considering the mode of action of antifoams, we review the factors
which contribute to the stability of a foam. A brief summary only is given
here. For more complete accounts the reader is referred to the many reviews
on the subject [1-5]. Our summary closely follows the excellent review by
Lucassen [2].

The structure of a typical foam formed by, say, shaking a surfactant so-
lution in a cylindrical vessel is shown schematically in Fig. 1. In the lower
part of the foam, bubbles are spherical (so-called kugelschaum) and of small
size with a relatively low gas volume fraction. As the liquid drains out
of the foam, the bubbles distort to form polyhedra. This polyhedral foam
(polyederschaum) consists of plane-parallel films joined by channels called
plateau borders. The gas volume fraction is here relatively high and the
density low so that polyhedra first form at the top of the foam column.
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Throughout the foam there are differences in the sizes of adjacent bub-
bles. This will mean that differences in capillary pressure will exist between
the adjacent bubbles so that gas will diffuse from small to large bubbles.
The more soluble the gas in the continuous phase or the higher the partial
vapor pressure of the continuous phase the faster this process of bubble dis-
proportionation will proceed. There is no arrangement of bubbles in a foam
which permits elimination of this process. Thus, for example, if there is free
headspace above the foam the upper surface will consist of films of curved
section. This will mean diffusion of gas out of the upper layer of bubbles
into the headspace because of the capillary pressure implied by the curved
surface.

As the films at the top of the foam thin, they become more susceptible
to rupture by mechanical shock or vibration. Moreover, with some foams
rupture of films at a certain thickness is spontaneous. Films at the top of
the foam then tend to break first, and the foam collapses from the top down-
ward in a catastrophic cascade.

A. Surface Tension Gradients and Foam Film
Stability

Films formed by adjacent bubbles in a pure liquid are extremely unstable.
Pure liquids therefore do not form foams. This arises in part because of the
response of the films to any external force such as gravity. Consider, for
example, a vertical plane-parallel film in a gravity field. There is no reason
why any element of that film should move in response to the applied grav-
itational force with a velocity different from that of any adjacent element.
No velocity gradients in a direction perpendicular to the plane of the film
surface against the air will therefore exist. There will then be no viscous
shear forces opposing the effect of gravity. The film will exhibit plug flow
(resisted only by extensional viscous forces) with elements accelerated
downward tearing it apart. The process 1s depicted in Fig. 2a.

This behavior can be drastically altered if we arrange for a tangential
force to act in the plane of the liquid-air surface so that the surface is es-
sentially rigid. In the case of a vertical plane-parallel film of a viscous liquid
with such rigid surfaces, subject to gravity, a parabolic velocity profile will
develop as shown in Fig. 2b. This means that velocity gradients will exist
in a direction perpendicular to the film surfaces. A viscous stress will there-
fore be exerted at the air-liquid surface. This stress must be balanced by the
tangential force acting in the plane of the surface. That force can only be a
gradient of surface tension. This balance of viscous forces and surface ten-
sion gradients at the liquid-air surtace can be written as

d‘YAF (duy)
— — 1
dy e\ 7 . (1)
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FIG. 2 Velocity profiles in draining foam films: (a) plug flow; (b) flow with par-
abolic velocity profile when film surfaces are immobile.

where y,r 1s the air-liquid surface tension of the foaming liquid, mg is the
viscosity, u, is the velocity of flow in the y direction, y is the vertical dis-
tance, and x 1s the horizontal distance in the film.

Thus, we find that if the force of gravity (or indeed any other force such
as that due to the capillary pressure caused by the curved plateau borders)
1s to be resisted by the film, then a surface tension gradient must exist at
the air-liquid surface. In the case of a vertical film in the gravity field the
gradient 1s [2]

dY ar _ @
dy 2
where £ is the film thickness, p is the liquid density, and g is the acceleration

due to gravity. This gradient can only exist where differences of surface
composition can occur. We therefore require the presence of more than one

(2)
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component in the film. Indeed, 1t 1s possible to speculate that in the case
of, say, aqueous foams diffusion of water through the gas phase may rapidly
remove any differences in concentration between different parts of a foam
film it only one solute 1s present. In this case at least two solutes (or three
components) would be required.

 Surface tension gradients due to differences in the surface excess of sol-
uble surface-active components may exist only when either the surface is
not in equilibrium with the bulk composition or there are concomitant dif-
ferences in bulk composition parallel to the surface. In the case of the former
the magnitudes of the gradients are of course determined by the rate of trans-
port of surfactant to the relevant surfaces. With concentrated surfactant so-
lutions transport rates by diffusion will be rapid and surface tension gradients
will tend to be eliminated. Thus, it has occasionally been reported that foam-
abilities decline at extremely high concentrations of surfactant in aqueous
solution. Conversely, however, if foam films are denuded of surfactant be-
cause of extremely slow transport rates, then the maximum surface tension
gradients which can be achieved will be small. Such films will therefore be
susceptible to rupture when exposed to external stress. However, the com-
plex problem of assessing both the effect of rate of transport on the surface
tension gradients in foam films and the overall resultant impact upon foam
film stability, when subject to an external stress, has not apparently been
fully addressed.

Differences in bulk composition are possible in a thin foam film as a
result of stretching the film. If the film is sufficiently thin, then any stretch-
ing causes a depletion of the bulk phase surfactant solution between the air-
liguid surfaces of the foam film as more surfactant adsorbs on those surfaces.
Distances perpendicular to the film are small so that, provided the stretching
occurs reasonably slowly, equilibrium inside the film element may be al-
ways maintained. Depletion of bulk phase surfactant concentration will
therefore necessarily mean an increase of the surface tension of the film as
it 1s stretched. This will, however, only occur if reduction of surfactant con-
centration causes a concomitant increase in surface tension. In the case of
a pure surfactant at concentrations above the critical micelle concentration
(cmc), this may not always happen.

We find then that it is possible to generate a surface tension gradient in
a foam film by stretching various elements of the film to different extents.
The increase 1n surface tension due to stretching imparts an elasticity to the
tilm. This property of foam films was first recognized by Gibbs [6] and is
usually reterred to as the Gibbs elasticity €5. It is defined as

2dY Ar 2dYAF
EG - -

" dlnA  dlnh

(3)
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FIG. 3 Gibbs elasticities of submicellar sodium dodecylsulfate solutions. (From
Ref. 2.)

where A 1s the film area and the factor 2 arises because of the two surfaces.

A plot of €5 against concentration for a submicellar aqueous solution of
sodium dodecylsulfate (SDS) is shown in Fig. 3 by way of example. Here
we see that, except at very low concentrations, decreases in film thickness
at constant concentration produce increases in Gibbs elasticity so that (deg/
oh). = 0. Thus, as the film becomes thinner stretching will cause a relatively
greater depletion of surfactant in the intralamellar liquid and the surface
tension will rise to a greater extent.

The plot of Gibbs elasticity against concentration shown in Fig. 3 clearly
reveals a maximum at concentration c,,. At extremely low concentrations
of surfactant we tind that upon stretching of the film there is essentially no
contribution from the intralamellar liquid, and the surfactant behaves as an
insoluble monolayer. Here with increase in surfactant concentration both the
surface excess and the elasticity of the monolayer increase. However, further
increases in the surfactant concentration will eventually mean that it signif-
icantly exceeds that required to compensate for stretching of the air-liquid
surface, so €g — 0. These two opposing consequences of increasing con-
centration conspire to produce the maximum in a plot of Gibbs elasticity.



