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Preface

Mechanics has developed as a branch of rational thought from very early times;
it is the oldest of the physical sciences and its principles, formulated to describe
mechanical behaviour in nature, form the basis of engineering calculations for a
vast range of devices and structures. In applying these principles to mechanical
design, an essential activity is the formulation of conceptual models, or idealiza-
tions, of real situations to which one’s current stock of analytic techniques may
be applied: the greater the precision one seeks in the correlation between actual
and predicted behaviour, the more sophisticated does the model nced to be.
Unfortunately, this increased sophistication almost always incurs increased com-
plexity in analysis and it is this which nltimately places a practical limit on the
implementation of advanced methods to design. However, the developments which
have taken place in the capability of computing devices in recent years have
made possible the implementation of advanced methods yielding levels of pre-
cision which previously could not Lave been contemplated. From the point of
view both of formulating theoretical models for, and the practical determination
of numerical solutions to, e.igineering problems, the energy (or variational)
principles of mechanics hold a position of central importance. In this book, we
are concerned with developing these principles in their application to equilibrium
stress and deformation analysis: the subject matter is developed in a careful man-
ner from the treatment of discrete rigid body/spring systems onto bar and more
sophisticated continuum stressing situations culminating in an introduction to
the finite element method.

The book is directed at a senior undergraduate and first year graduate level of
work so that the usual basic experience of statics and ‘mechanics of materials’ is
taken for granted. However, in teaching advanced engineering students over a
number of years, the author has learnt that a frequent cause of difficulty with
some advanced theory is an imperfect recollection of elementary principles,
studied quite some time previously, with a consequent difficulty in relating these
principles to the current situation. This seems to be especially true of the energy
principles of mechanics which often receive only a small amount of attention

in undergraduate courses. Accordingly the subject matter is developed from
basic principles to a good level in a reasonably self-contained manner so as to
facilitate this process of reference back from advanced to elementary ideas. It is
intended to be useful for individualstudy or as supplementary reading for a
course. The presentation is such that the first two chapters alone could form the
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basis for a series of lectures to undergraduate mechanical or structural engineers;
the remainder is written for the first year graduate student or practicing engineer
who has cause to take up advanced methods in his professional work.

The principles of virtual work and virtual complementary work are concerned
with describing the static equilibrium of a system by comparing the relative
merits of a number of candidate solutions and identifying the true one by re-
quiring that some property of the system shall attain a stationary value. Whilst
the overtones of economy in nature implicit in this approach have considerable
plausibility; it, and the concomitant notions of virtual displacements and virtual
forces, are a source of unease to engineers who are usually more familiar with
the cause and effect philosophy of vector mechanics. The earlier sections of the
book are consequently devoted to overcoming this unease by providing a very
full account of the energy principles in relation to discrete systems; in this way
the underlying philosophy can be absorbed without the distractions of the
higher level of mathematics required when continuum systems are discussed.

It is only when these basic concepts have been thoroughly understood as a
result of reflection and practice in treating relatively simple systems that one
can approach more complex situations with confidence.

Chapter 1 is concerned only with discrete or lumped spring and rigid body
systems. It begins with a brief review of some very basic notions in mechanics
and continues with a careful discussion of system configuration in which con-
strained and generalised coordinates are introduced. For the purposes of contrast
with the subsequently developed energy methods, the principles of vector

statics are reviewed and it is shown that the solution to any problem in the statics
of deformable bodies involves three essential ingredients (a) the consideration

of equilibrium of forces, (b) the requirement of geometric fit, or compatibility
of the displacements and (c) some force-deformation characteristic for the
elements of the system. Work, energy, the idea of a virtual displacement, the
principles of virtual work and stationary potential energy are then described

and applied to a few simple situations. In a similar way, we then discuss and
apply the ideas of complementary work and energy, statically independent forces
and the principles of virtual complementary work and complementary energy.
The presentation is such as to highlight the complementary nature of two charac-
teristic approaches to problems in structural mechanics: on the one hand, the .
virtual work principle leads to the stiffness method of analysis whilst on the other
the virtual complementary work principle leads to the flexibility method. We
conclude with a discussion of the stability of equilibrium. The author considers
this chapter to be of crucial importance in that all the essentials for a variational
approach to mechanics problems are introduced; the remainder of the book is
concerned with the refinements necessary to facilitate tackling problems of
greater complexity. ‘

In Chapter 2, we apply the previously established principles to structures com-
prised of bar-type elements. We study the characteristics of individual elements
under conditions of axial load, torsion, bending and transverse shear and consider
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the idealised assemblages of pin jointed and rigid jointed frames. By means of
these relatively straightforward systems we illustrate the freedom of choice one
has for virtual displacements and virtual forces and show how the former can be
used to evaluate the degree of statical indeterminancy of a given structure. The
principles of virtual work and virtual complementary work are applied to such
situations as will highlight their scope and limitations without undue computa-
tional effort and once more to formulate the alternative stiffness or flexibility
methods of structural analysis.

Solid continuum mechanics is the body of analytic techniques by means of
which a high level of precision has been attained in the stress analysis of many
complex systems: Chapter 3 is concerned with the foundations of this topic.
Whether one bases this level of treatment on vector or variational principles, it
is necessary to clarify the concepts of a continuum, the state of stress and strain
and to establish a constitutive relation between stress and strain for the continuum
material: the earlier parts of the chapter are concerned with these matters. The
interpretation of equilibrium and compatibility conditions at a continuum

level are discussed and, with these foundations firmly lain down, the formulation
of the general problen of elastic stress analysis follows. The chapter concludes
with an account of some specific classes of.problem.

When variational principles are applied to continuum problems, the appropriate
mathematical tool is the calculus of variations. Chapter 4 is concerned with an
account of its principles which is by no means exhaustive but which the author
feels is adequate for the purposes of this book. Its central purpose is to show

that when the behaviour of a continuous system is in accordance with some
minimum principle, the procedures of the variational calculus yield differential
equations together with appropriate boundary conditions describing the behaviour.
The subject matter is essential preparation for Chapter 6.

The so-called direct methods of the calculus of yagiations provide powerful
practical techniques for obtaining numerical solutions to very complex stressing
problems of engineering significance. They comprise a body of approximation
methods for treating continuum problems. Several such methods have been
developed over the years, but in Chapter 5 we restrict ourselves to a discussion
of the more widely used ones due to Rayleigh, Ritz, Kantorovitch, Galerkin,
Euler and Trefftz. These methods are of importance in their own right, but they
also form a valuable preparation for an understanding of the more modern
finite element procedure.

Chapter 6 is concerned with formulating the variational principles of mechanics
for a solid continuum. Here the ideas and methods of Chapters 3 and 4 are brought
together in a generalisation of the procedures of Chapters 1 and 2 and Reissner’s
principle is introduced. We see how the relevant equations of equilibrium and
compatibility can be deduced for an ‘exact’ theory and, by way of specific

classes of problem, how all the relevant equations for an ‘approximate’ theory

can be deduced in a systematic and consistent manner. A designer cannot be
content with merely producing an adequate approximate theory to describe his
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current problem, he has to produce quantitative data from which suitable pro-
portions may be determined for structural and machine parts. Then, since even
an approximate theory may yield differential equations which are difficult to
“handle, the direct methods of the calculus of variations can be extremely valu-
able. Chapter 7 is a collection of substantial examples in which the methods of
Chapter 5 are applied to a variety of situations of practical interést. The examples
show that the effect of these approaches is to descretise a continuum model, that
is the behaviour of a system with an infinite number of degrees of freedom is
approximated by one having only a finite number. Under these circumstances
the virtual work principle is concerned with determining a compatible configura-
tion for which equilibrium is satisfied only in some average sense whilst the
virtual complementary work principle is concerned with equilibriant stress
systems for which compatibility is satisfied only in some average sense. Con-
siderable emphasis is placed on clarifying these aspects of the work since con-
fidence in applying and interpreting the results of these methods only comes
from appreciating the physical implications of the various mathematical
operations carried out.

The finite element method is introduced in Chapter 8. Emphasis is placed on the
so-called displacement method and a conscious effort is made to relate the method
to the material in the earlier sections of the book. Following a discussion on
generating displacement models, a number of classes of problem are treated
showing that the characteristic feature of the method is the generation of stiff-
ness equilibrium equations in which the basic unknowns are displacements. The
torsion problem, formulated in terms of the Prandtl stress function, is treated

to provide an example of a complementary energy approach whilst the chapter
is concluded by a brief introduction to the more sophisticated hybrid and mixed
formulations which have a number of important applications.

Some useful results from mathematics are collected together in the Appendix.

The variational methods of mechanics are amongst the most beautiful of man’s
intellectual achievements and at the same time provide some of his most useful
analytic tools. Their range of application stretches well beyond that covered here
but to keep the book to a moderate length a number of interesting topics have
had to be put aside. Thus, to add a satisfactory treatment of shell problems,
plasticity or the stability and dynamics of elastic systems would require sub-
stantially more space; on the other hand, to replace the introduction to finite
elements by, say, an account of stability or dynamics is largely a matter of
personal preference. The object has been to produce a reasonably self contained
developing account of the use of energy methods in determining the displace-
ments and stresses in a mechanical system in a state of stable equilibrium. It is
my hope that, with the pointers given in the Introduction, the reader who wishes
to proceed to the literature dealing with the more specialist areas of this work
will feel equipped so to do.

T. H. Richards,
The University of Aston,
Birmingham.
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Author’s Introduction

In spite of the advanced stage to which Engineering Science has progressed, it is
not yet capable of describing the behaviour ot real engineering systems in every
particular. Consequently, an essential clement in the process of designing such
systems is the generation of conceptual models (idealisations) of real situations
to which one’s current stock of analytic and numerical techniques may be applied.
Depending on the requirements of the problem under consideration and the
current state of one’s capability for solution, models at various levels of sophisti-
cation may be contemplated and calculations based on these models will yield
predictions at various levels of precision. Although one may hope that such
calculations will be adequate for the purpose at hand, it is often the case (and
usually so for advanced products) that the development of a satisfactory design
requires laboratory work and in-service experience to confirm the adequacy of
some. theoretical model or to overcome some problem for which no theoretical
treatment is contemplated.

In the design of a given product, one may need to refer to several branches of
engineering science. Yet, whatever function'the device must perform, it will
need to be structurally sound. Now it is very obvious that if a product actually
breaks it certainly will not have been adequate, but malfunction may also occur
due to excessive distortion under ioad or to spurious response to some environ-
mental disturbance such as temperatuie or vibration. Evidently stress and defor-
mation analysis is central to design and in this book we are concerned with
showing what a powerful aid to this work is offered by the variational principles
of mechanics. The aim is to develop the subjeci in a self contained coherent
manner from elementary beginnings to advanced applications. To this end, we
first consider one of the most basic models of a mechanical system, a lumped
spring/rigid body arrangement, and acquire an appreciation of the underlying
notions of the variational approach without the distractions of the higher level
of mathematics necessary for continuum situations. In this way, we gain a ‘feel’
for virtual displacements (variations to a configuration), virtual forces (variations
to equilibrium states) and a sense of nature working with sublime economy of
effort to achieve some end. In preparation for a more sophisticated treatment
of systems with distributed mechanical properties, we proceed to clarify the basic
ideas of continuum mechanics and to examine the variational calculus, which is
the essential mathematical tool for manipulating energy principles applied to
continua. With this ground work cousolidated, it is possible fully to appreciate
the elegance and practical utility of the variational approach and to benefit
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from the insight it provides. In formulating, by the vector approach, an approxi-
mate theory say for beams or plates, it is not always clear just what mathe-
matical terms are significant and what are not: in contrast, we perceive that the
variational approach yields a consistent statement of the boundary value prob-
lem automatically. Further, in the event of even the approximate theory being
too difficult to handle analytically, a whole range of numerical processes, cul-
minating in the finite element method, is available to us. Except for a brief
reference to stability in Section 1.9, we shall be concerned with problems in
equilibrium stress analysis; a consideration-of large deformations, buckling,
dynamics and plasticity or viscoelaticity would require far more space than we
can afford. However, to provide some indication of how the energy methods
may be applied to problem areas beyond those of immediate interest in this
book, we shall devote the remainder of these introductory pages to a very brief
discussion of just three beam problems. We shall discovet that whilst the equili-
brium configuration of a finite degree of freedom system can be described by a
set of simultaneous algebraic equations,

[Kliq} = {Q} , (L.1)

an analogous treatment of the buckling or free vibration of such systems leads
to the eigenvalue problem

(K] — A[MD) {q) = O . (12)

Suppose a beam, simply supported at both ends, carries a distributed load of
intensity p(x) per unit length over its entire length L As we shall see in Chapter 1,
the equilibrium configuration of a mechanical system may be identified by means
of the principle of stationary total potential energy; then, in the case of this
beam, the deflexion curve w(x) is identified by

8V = 0 (1.3)

VBT = wpsn 1
where V =| — dx - wdx T s 1.4
fo o) fo p (1.4)

The appropriate mathematical tool for handling equation (1.3) when (I4)is
substituted into it is the Calculus of Variations (Chapter 4). If we follow its rules,
we find that equation (1.3) leads to '

a? (. d*w
together with appropriate boundary conditions; equation (1.5) is the familiar
differential equation of equilibrium for a beam. If the bending stiffness &7 is
constant, solving equation (I.5) is a straightforward matter, but if £7 is a function
of position along the beam, the solution may be awkward to achieve. An alterna-
tive approach, which has increasing attraction as the systems of interest become
more complex, is to seek an approximate solution by assuming a representation
for the deflexion curve in the form of a series of prescribed functions ¢(x).

1 See Chapters 2 and 6.



Then,

wix) = > qi) (L.6)

i=1

where the g’s are parameters to be determined. Substituting from equation
(L.6) into (1.4),

V= %Z ,Z QiQIfolEI¢i”¢j”dx - Zifh_/;lp‘bidx : @7

Denoting ki = fO’E1¢,."¢,."dx = k; (L8)

and 0; f o'p¢,-dx , (19)

equation (I.7) becomes

V = %Z Z‘kijQiqj - ZQ#I:‘ . (1.10)

The reader who is familiar with matrix algebra® will recognize this as
V.= ial'[Kliq) - 1q1'10) - (L11)

Here, [K] is a matrix of the stiffness coefficients k;;, {g} is a vector of generalised
coordinates and {Q} is a vector of generalised forces corresponding to the {g}
(see Chapter 1): we observe from equation (I.8) that [K] is'symmetric.

Equation (1.11) expresses the typical form of the potential energy expression for
a finite degree of freedom system and we see that the energy approach has furn-
ished, in a rational manner, the appropriate mechanical characteristic [K] and
disturbance {Q} for a substitute discrete system whose behaviour approximates
that of the real beam. (We will not dwell on the considerations affecting the
choice of the ¢’s here, they are discussed in the main body of the text).

8V = 0, applied to equation (I.11) now ensures satisfaction of beam equilibrium
only in some average way summarised in

. [Kltai = 10} . (1.12)

Whilst the above beam takes up its bowed shape, its ends will travel towards each
other by some small amount A. As this movement occurs, the moment arms of
the support reactions change very slighily, but in the usual theory, where the
deflexion is small, this effect is negligible. If, on the other hand, the beam also
supports an axial thrust 7', as shown in Fig. 1.1, the bow in the beam causes 7

to have a moment arm (equal to the deflexion) and hence a bending action as
well as the ordinary stress = force divided by area effect. This feature of an
alteration in the action of a load as the deflexion occurs is a simple exan ple of

1 The reader who is not familiar with this notation will find a summary in the Appendix.
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non-linear behaviour rooted in structural geometric effects rather than a non-
linear stress-strain law for the material.

Fig. .1

To apply the energy method to this problem, it is only necessary to take into
account the work done by T in travelling through the distance A.T Then, the
total potential energy of the system is

v o= f’bl(w”)mx - f’pwdx ~TA . (L12
o 2 0

We are concerned with bending actions as opposed to direct compression here so

that the final length of the bowed beam is still /. Then,

| = [“"“A’ds . (113)
Jx =0
2|\
Now ds = [1 + (d_WH i (1.14)
dx

and, if we suppose dw/dx to be small, expanding by the binomial theorem and
ignoring terms in (dw/dx)* etc, yields

' . 2
ds = l+l d_w) dx . (1.15)
2 \dx
Substituting from equation (1.15) into (1.13), we have
& = lf’(w')mx . (16)
2Jo

For equilibrium, § ¥ = 0 and applying the formal processes of the calculus of
variations to equation (I.12), we have the Euler-Lagrange equation for a uniform
" beam column as
d*w dw
E[:j;f + T‘&x—z‘ = P (1.17)

T Notice that A arises from the bow in the beam alone and not from direct compression. We
have ignored this latter effect since we are interested in the buckling problem and it can be
shown that the value of the buckling load is not affected by the value of the direct com-
pression energy.
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1 the beam supports the end thrust alone, p = 0 and equation (1.17) becomes

4,

0 . (I.18)

Equation (1.18) gives non-trivial solutions for w only for certain discrete values

T it of the end thrust. These critical values of T are the eigenvalues of the problem
and the corresponding solutions for w are the eigenfunctions. Equation (I.18) is

a buckling equation and the smallest value of Ty is the buckling load.

If we assume a solution for w(x) in the form of a series of prescribed functions

(x),

n

Wa) = D> ane) (1.19)
. i=1

with the q; parameters to be determined, the potential energy becomes

Vi = % Z ZQi(Ij(folE](bi"d?j”dx)— Z%’(foll’@dx)
_ %Z Z . q’_( fo ’T¢,-’¢,-’dx) : (1.20)

Denoting

ki = LIEI¢,‘"¢J'”dx = ki, sy = jolT¢i’¢j’dx = Sji,

Q = folpcb,-dx, 1.2n

kij is the usual stiffness coefficient with respect to g; and g; implicit in the
assumed deflexion shape, s;; is called the geometric stiffness coefficient and 0;
is a generalised force. Then,

;‘ZZ (Kij = si)qiq —Z Quqi (1.22)

or V = V(gs) .

Now, we shall see in Section 1.9 that the equilibrium configuration ceases to be
stable when the second variation 52V ceases to be positive definite. For the
present example, this implies that:

K] - [S]l = o . (1.23)

This is an algebraic eigenvalue problem: expanding the determinant yields a
‘polynomial in T, the roots of which are its critical values T,;,. The smallest
value of T, is the buckling load. If we denote Terie = AT, where \ is a para-
meter, equation (1.23) can ' : written in the standard form

I[K] — XS]} = 0. 1.24)

vV
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Equations-(1.23) and (I.24) correspond to systems with a finite number of
degrees of freedom and we see, once more, how an energy approach provides a
convenient and rational means for calculating the appropriate parameters [K]
and [S] for the discretised continuum.

It is often necessary to compute the response of a structure to dynamic loading:
when a structure is set in motion, its elements experience accelerations so that
inertia forces are called into play. According to D’Alembert’s principle, a
dynamics problem may be converted into a statics one by taking these inertia
forces into account so that the principle of virtual workT may be employed. If the
displacements are considered to be prescribed at two instants of time ¢, and #,, so
that any virtual displacements must vanish then, integrating the virtual work
equation with respect to time, with the inertia forces incorporated into the body
force term, leads to Hamilton’s principle. This may be regarded as the basic
principle of dynamics and states that:

Of all the geometrically possible motions which a system may execute, the
true one is that which renders

64 = Sft’Ldt =0. (1.25)
tl

The quantity A is called the Action, whilst L = T — U — is the Langrangian
function. T is the kinetic energy, U the strain energy and £2 the potential energy
of the applied loads.

Application of the formal processes of the calculus of variations to equation
(1.25) for a continuum leads to partial differential equations of motion and
appropriate boundary conditions. Alternatively, we may seek an approximate
solution after the fashion we now employ in a further study of the beam.

Suppose the beam is excited by a distributed load p(x, t), which is now a func-
tion of time and position, and that the deflected shape taken up can be approxi-
mated by

n

W) = > a0 - 126)

i=1

The ¢’s are prescribed bent shapes for the beam and so are functions of position
x alone satisfying the boundary conditions, whilst the g’s, which are functions
of ¢, are the amplitudes of the constituent shapes making up w(x, ).

If the mass per unit length of the beam is m, the kinetic energy is

T = %folm(u;)’dx - %Z ]Zdidjf()’m¢i¢,.ax . a2

i
Denoting my; = flm ¢,-¢_,-dx = my (128)
1]
t See Chapter 1.
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as elements of the mass matrix [M] 1,

T = 3lq}'IM]{q} . (L.29)
The strain energy is given by

U = 1iq}'[K]iq} , (1.30)
where ki = "folElqbi"@'_'dx
as before and Q = - {q}*10t ,
with o) = L 'Dodx . (131)

Hamilton’s principle now becomes

t: l .0t . 1 t t o
a[ft (E{ql Mliq} - E“” [K]igq} +1q} th)dt] 0 (132

where we have taken advantage of the symmetry in [M] and [K]. Integrating
the first term by parts, T

Firstterm = |{8q} ' (MG 11, — [ teqi [M)13)dr . (1.33)

But {6g} = 0 att,and t, so that equation (1.32) becomes

[“1oal @1+ Kltal - 1ohar = 0 . (134)

1

At any instant, the {8q} are arbitrary so that the motion is described by
Mliqg} + [Kitgl = fo} . (1.35)
The energy method has again proved to be a very convenient means of generat-

ing the significant form of the excitation force, {0}, and the relevant system
parameters [M] and [K].

T Notice that [M] is not merely a diagonal matrix as it would be for a simple lumped
parameter system. )

11 Alternatively, one could use Lagrange’s Equations

dr \ag; 9q; !

which also follow from Hamilton’s principle.
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When the beam is in a state of Free Vibration, { 0} ={0} and { ¢} is a harmonic
function of time. Then,

J:

w(x, 1) = G sin wt. ¥x) (1.36)
i=1
Substitution in equation (I1.35) yields
(IK1 — AMDigt = o} (1.37)
where A = w?. Non-trivial solutions {g} are obtained only when
[[K] — AM]| = O (1.38)

The roots A\j, Ay ... .. A, of this polynomial correspond to the Natural frequen-
cies of vibration of the discretised system whilst the corresponding {3}, {32} . .
are its Natural modes.

This book is concerned with the application of the variational principles of
mechanics to the solution of problems in elastic stress analysis. In these intro-
ductory pages, the aim has been to give an impressionist view of the topics
covered and to provide a few pointers as to how they may be extended to treat
other problem areas which are significant in practical design. It is hoped that

the student who has read this text and wishes to proceed to the literature dealing
with these more specialist fields will feel equipped so to do.
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