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I. Manufacturing Issues in the Gigachip Age

The cost of manufacturing submicron, ultralarge scale integration (ULSI)
chips is scaling upwards in at least inverse proportion to the downward
scaling of device feature sizes. These expenses are driven by a manufactur-
ing budget crisis associated with the technological and complexity limits of
integrated circuit (IC) design, costs of research and development to address
manufacturing issues, and facility capitalization [1]. Thus, examination of
the rate of progress in microelectronics over the past 30 years suggests that
the primary challenge in reaching the gigachip age in the year 2001 will be
the semiconductor industry’s ability to change the cost trend lines; that is,
to change the economics of how ICs are developed and manufactured [2].

Rapid Thermal Processing 1 Copyright © 1993 by Academic Press, Inc.
Science and Technology All rights of reproduction in any form reserved.
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2 Richard B. Fair

The scale of integration of dynamic random-access memory (DRAM)
chips has continued to increase by four times every three years! And there
is evidence that nationalistic efforts in Japan, Europe, and the United States
are attempting to accelerate the integration-versus-time trend curves in the
face of shrinking profit margins in order to achieve world dominance.
However, there is great risk in these investments. Indeed, the system appli-
cations that would utilize higher density DRAMs are not keeping pace with
chip availability. It is clear that the semiconductor manufacturers are trying
to drive the end-user market! Thus, accelerated leapfrog programs to
produce gigachips may have an inadequate market for timely DRAM sales
[3]. It is expected that 85% of gross annual sales of 1G DRAMs will be
required to pay for research and development and manufacturing costs,
assuming normal market growth [4]. This estimate is based on 1G DRAM
research and development investment growing to 10-15 times that of the 1M
DRAM, 1.2 to 1.3 times more processing steps per generation, 0.9 times
fewer chips per wafer per generation in spite of larger diameter wafers, and
40-50 times larger investment in production equipment!

Several approaches have been suggested for reducing the costs associated
with developing and manufacturing gigachips, including internationalizing
the technology through global partnerships. Requirements on contamina-
tion, process control (manufacturing parameter budgets), and cost of manu-
facturing floor space are driving a paradigm shift to a microprocessing
methodology. Thus, single-wafer processing environments with highly con-
trolled, ultraclean ambients clustered together in specialty process modules
are being considered. In single chamber machines it is necessary to extract a
silicon wafer out of a carrier and present it to the process chamber. Wafer
transport among modules can be done best in a modest vacuum (107* to
107° torr). In situ vacuum processing equipment accounts for 40% of the
total equipment today. Rapid thermal processing (RTP) using lamp heating
will move thermal processes into cluster tools. Dry cleaning will also move
vacuum processes to cluster tools. It is even projected that in situ lithography
is possible. Thus it is possible that 80% of gigachip equipment could be in situ
vacuum-based clusters controlled by a factory information system [2].

Rapid thermal processing is a key technology in the cluster tool, single-
wafer manufacturing approach. With RTP a single wafer is heated quickly
at atmospheric or low pressure under isothermal conditions. The processing
chamber is made of either quartz, silicon carbide, stainless steel, or
aluminum with quartz windows. The wafer holder is often made of quartz
and contacts the wafer at a minimum number of places. A temperature
measurement system is placed in a control loop to set wafer temperature.
The RTP system is interfaced with a gas handling system and a computer
that controls system operation. The small thermal mass inherent in this
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Table I Technology comparisons.

Furnace RTP
Batch Single wafer
Hot wall Cold wall
Long time Short time

Small dT/dt
High cycle time
Temperature measurement

Large d7/dt
Low cycle time
Temperature measurement

—environment —wafer
Issues Issues

—small thermal budget —uniformity

—particles —repeatability

—atmosphere —throughput

—vertical furnaces —stress
—measurements
—automation

processing system along with stringent ambient and particle control allow
for reduced processing times and improved control in the formation of pn
junctions, thin oxides, nitrides and silicides, thin deposited layers, and
flowed glass structures. In essence RTP provides a controlled environment
for thermally activated processes that is increasingly difficult for existing
batch furnace systems to achieve. In addition, RTP is fully consistent with
the advanced microprocessing-for-manufacturing paradigm.

A comparison between batch furnace and RTP technologies is shown in
Table I. In order to achieve short processing times, one trades off a new set
of challenges including temperature and process uniformity, temperature
measurement and control, wafer stress, and throughput.

Aroad map showing the introduction of RTP into manufacturing DRAMs
is depicted in Table II. Each of the key processing areas that will be impacted
by RTP is listed along with estimated timing for the transition from batch
to single-wafer technology. Details regarding these processing areas are
provided in the subsequent chapters of this book. A discussion of the manu-
facturing requirements that are driving the expanded use of RTP follows.

II. The Parameter Budget Crisis

The challenge to the semiconductor industry to maintain future viability is
to develop equipment and processes that will mass produce ULSI chips with
tight tolerance, high reliability, and low costs. This challenge translates to
technological problems associated with patterning, doping, interconnections
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Table II Rapid thermal processing technology road map.

1985 1990 1995 2000
Design rule (um) 2 1.3 0.8 0.5 0.3 0.2 0.15
DRAM equivalent 256k 1M 4M 16M 64M 256M 1G
Wafer size (in.) 5 5 6-8 8 8 —10 12
t,, (nm) 35 25 20 15 12 10 8
X; (um) 0.3 0.25 0.2 0.15 0.10 0.08 0.06
Repeatability (°C) +15 +5 +2 +1
Uniformity (°C) +7-10 +3-5 +2-3 <*2
Accuracy (°C) +20* +5-10 +3-5 <+3
Thermal budget x; Furnace RTA
o Furnace RTO
Thin dielectrics LPCVD RTCVD-ONO
Silicides Furnace RTA
Epitaxy LPCVD, MBE, APCVD, etc. RTCVD
Polysilicon LPCVD RTCVD-SiGe
Metals LPCVD, sputtered, evaporated RTCVD
Cleaning Wet chemistry RTC
Processing Batch Single wafer Cluster tools
Atmospheric budget 0.1/cm? 0.01/cm? 0.005/cm? 0.001/cm®

>0.5 um >0.3 um >0.2 um >0.1 um

defect densities, mechanical and structural aspects of handling large-
diameter silicon wafers, contamination, and thermal requirements. All of
these problems can be discussed in terms of process parameter targets and
control tolerances or budgets. The allowed processing parameter budgets
are set by device performance and manufacturing requirements, and it is
through quantifying these budgets that the requirements for advanced
manufacturing are set [1].

A. THERMAL BUDGET

The process thermal budget refers to the allowed time at temperature
that can be tolerated to control dopant impurity diffusion and oxide
growth [5]. In addition there is a manufacturing thermal budget that deals
with temperature control and uniformity across a wafer. Critical concerns
for ULSI manufacturing include wafer temperature control during ion
implantation, implantation damage annealing, sheet resistance variation of
doped layers, oxide thickness control, and absolute and repeatable tempera-
ture measurements.
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The requirements on equipment to meet the thermal budget needs of
junction formation and oxidation include the following:

e a mechanical budget that satisfies the structural and mechanical aspects
of processing large-diameter silicon wafers;

o a temperature uniformity budget across each wafer from run to run;

o an atmospheric budget for gases used in the furnace;

e a particle contamination budget;

o a time budget that deals with processing times as small as a few seconds
and throughputs measured in hundreds of wafers per hour; and

e absolute, repeatable temperature measurements of wafers.

Improper processing conditions and wafer handling can lead to the
nucleation of structural defects in silicon such as slip dislocations or wafer
warpage, nonuniform oxide thickness, and irregular silicide contact inter-
faces. These effects produce concomitant problems with device junction
leakage, lithography excursion, dielectric and contact nonuniformities,
nonuniform junction sheet resistance; etc. Many such problems have been
solved in large, multiwafer furnace annealing systems with large thermal
masses. However, these systems have difficulty meeting all the time,
particulate, and atmospheric budgets of ULSI technology. An alternative is
to go to single-wafer systems using RTP.

Rapid thermal processing uses transient radiation sources such as arc
lamps and graphite heaters to produce short-time, high-temperature,
isothermal wafer processing. RTP can also be accomplished with con-
tinuous heat sources where the wafer is moved rapidly in and out of the
vicinity of the heat source.

B. AMBIENT CONTROL BUDGET

The smallest fabricated dimension in a MOSFET is the gate oxide thickness,
which is grown by thermal oxidation. Ultrathin oxide growth requires careful
process control and oxidation furnace optimization. In large-diameter batch
furnace tubes, control of the furnace ambient is difficult because of back-
streaming of air from the large open ends of the tubes. If control of the
partial pressures of the oxidant gases (dry or wet oxygen) were the only vari-
able in achieving 70 + 3.5 A oxides, then these partial pressures would have
to be maintained at +6% of nominal [1]. Trace amounts of water must also
be minimized to the ppb range [6].

Silicon surface control prior to the growth of thin oxide layers is also
important because of the fact that a native oxide grows on bare silicon at
room temperature. Thus, 70-A film growth can be controlled if the Si
surface is HF cleaned, leaving the surface Si bonds terminated with H [7].



6 Richard B. Fair

Desorption of the H at 300°C in a highly pure Ar gas ambient followed by
the formation of one monolayer of oxide passivates the surface for sub-
sequent gate oxide growth [8].

For ambient budget control, single-wafer RTP processing chambers offer
a microenvironment approach that can satisfy the stringent requirements
for ultrathin oxide growth using rapid thermal oxidation (RTO).

C. MEcHANICAL BUDGET

The mechanical budget for ULSI manufacturing impacts on the patterning
budget and the budgets for wafer defects and dopant profile control.
Included in this budget are mechanical systems for alignment, wafer film
stresses, wafer handling, and wafer flatness.

The patterning budget, overlay registration accuracy, A,, is an important
concern for ULSI. There are numerous contributions, A;, to A, that, if
mutually independent, can be summed together in quadrature [9]:

8 = <Z A?)” (1.1)

Mechanical contributions to A, include the following:

o Alignment system errors—due to limitations of the systems in litho-
graphic printers for registering alignment marks or the masks to the wafer
alignment marks.

e Wafer processing errors—due to changes in wafer feature dimensions
from mechanical stresses of deposited films, high temperature processing,
and etching tolerances.

e Mask and wafer mounting errors—due to deformations of the mask as
mounted in the exposure tool or local changes in wafer flatness during
chucking of properly selected, low-warpage wafers [10].

D. CONTAMINATION BUDGET

Scaling transistors to smaller dimensions has a profound effect on the
manufacturing yield and reliability of integrated circuits. Processing
complexity (i.e., the numbers of lithography levels) increases as devices
become smaller. This added complexity is a result of the need for additional
levels of metal to interconnect the increased number of subcircuits on a
chip. Each added metal layer requires two or more film layers and two
masks. Processing complexity is also increased by the need to overcome
those material or circuit parameters that do not scale with decreasing
device dimension. Such parameters include the metal-semiconductor work
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function, silicon conductivity, and circuit operating voltages. A doubling of
mask levels and films is expected as the technology is scaled down from 2 to
0.25 ym. In addition a similar doubling is expected in the number of process
steps for manufacturing a chip [11].

These trends make devices more susceptible to contamination introduced
by particulate and chemical impurities. Beside the increased amount or
processing and, thus, exposure to impurities, smaller devices are susceptible
to smaller defects and smaller amounts of chemical impurities that may
cause chip loss [11]. For example, smaller devices have larger perimeter-to-
area ratios, and defects along pattern edges are more likely to cause prob-
lems. Thinner oxides are vulnerable to smaller particles. Smaller devices
biased with voltages that are not scaled produce higher internal electric
fields that aggravate hot electron effects and oxide breakdown.

Particles can cause yield loss through the presence of random defects in
the patterning of film levels. Chip yield is expressed in terms of the defect
density through various statistical models such a Poisson distribution [12]:

Yield = e™ 1.2)

where A is the chip area and p is the density of defects per unit area. On the
basis of the device design parameter trends and forecasts of the allowable
killer surface particle sizes and densities to achieve a fotal allowed defect
density of 0.25/cm?, it has been shown that 0.001 particles/cm? per step are
requlred The objective of 0.25 defects/cm? provides a yield of 78% for a
1-cm? chip for a Poisson distribution. Both the defect density and the killer
defect size decrease as device dimensions decrease. These results are based
on the rule of thumb that killer defects are at least 1/3 the size of a litho-
graphlc feature or 1/2 of a film thickness. With a gate oxide thickness of
70 A, a 35-A particle could be fatal! As a result, scaling device dimensions
means that improved means must be found for controlling particle sizes and
numbers in the processing environment.

The particle budget crisis is illustrated in Fig. 1. Measured particle
densities are plotted versus particle size for airborne particles in a state-of-
the-art semiconductor clean room [13], in bulk gases [14-16], in different
semiconductor chemicals [17], and the minimum reported size distribution
in deionized water. All the distributions in Fig. 1 show increasing particle
densities with decreasing particle size. And this is the environment in which
smaller devices will be made. Device scaling by a factor of two takes
place in a processing environment in which the number of potentially fatal
particulates in the air increases by four to eight times! The impact on yield
may be devastating. Under these conditions a process that yields 25% and
is limited by particle contamination would yield nothing after scaling down
dimensions by a factor of two [11].
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10,000
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FIGURE 1. Comparison of particle size distributions in bulk gases, chemicals, deionized
water and in processed air in the MCNC semiconductor clean room. The particle densities
increase rapidly with decreasing size, which is the environment in which traditionally processed
silicon devices are being scaled (after Fair, Ref. 1).

In contrast to what is depicted in Fig. 1 the National Advisory Committee
on Semiconductors the United States has come out with consensus targets
for particle densities in chemicals, in gases, and clean rooms. The target for
Microtech 2000 in chemicals is 2000 particles/L of size greater than
0.02 um, a reduction by a factor of 1000. Bulk gas targets for 0.02 um
particles are 0.02 particles/ft’, and for airborne particles of size greater
than 0.02 um, the target is 1/ft*! By extrapolation from current clean room
practices and chemical purification methods, these targets will come only
at great expense, if at all. In addition, the target for chemicals is much
too high, paving the way for dry processing to eliminate wet chemistry
completely. For example, it has been demonstrated that the number of
particles added in an aqueous native oxide clean-up step is five times greater
than in a vapor HF process [2]. Such gains in particle control will drive new
strategies in silicon processing such as in situ dry cleaning.

Particulate and contamination control possible with in situ processing
is also expected to be important in chemical vapor deposition (CVD) of
thin layers. Rapid thermal CVD (RTCVD) processing is also consistent with
the need for multiple, sequential processes such as RTO, rapid thermal
nitration, and CVD polysilicon and etching. Other requirements for
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RTCVD films that have not been quantified for gigachip manufacturing
include film conformity and planarity, film stress, integrity, and the degree
to which such films absorb or evolve water.

E. ELEcTRICAL BUDGET

The electrical budget refers to the control of electrical device parameters
that are determined by device scaling rules. Included in this budget are
specifications for contacts, interconnections, electric-field levels, and
process-induced electric charge. The electrical budget is shown in Table III.

For ULSI it is essential that low-resistance contacts to semiconductor
junctions be made with high yield. These contacts must also be reliable,
serving as barriers to unwanted metal reactions with silicon. Barrier layers
of titanium/tungsten and titanium nitride have proven to be good choices.

Low-resistance contacts are imperative. If contact dimensions are halved,
contact resistance increases by a factor of four. Thus, specific contact
resistances must be decreased by factors of 10 or better.

Refractory silicides of transition metals have been used to improve
contact resistances. Recent work with Al-TiW-TiSi, contacts to shallow n™*
Junctions has been reported [19]. By performing sputter etching of the TiSi,
surface to remove any oxides prior to TiW deposition in the same vacuum
environment, specific contact resistances below 2 x 1078 ohm-cm? can be
achieved. Thus, the contact resistance budget is driving the use of in situ
vacuum processing in an RTP, single-wafer module.

Table III Electrical budgets.

e Contacts
—High yield
—Low resistance (108 ohm-cm?)
—Reliable
e Interconnects
—High conductivity (higher is better)
—Compatible
—Multilevel (2-4)
—Low electromigration (J = 5 x 10° A/cm?)
—Good step coverage
—Low stress
—Low interlevel capacitance

e V; control
e Hot carrier injection (limiting E-fields)
e Radiation damage




