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TRANSLATOR'S PREFACE

This is a translation of the Russian book IIPEJIEJIBHEIE PACIIPE-
HOEJIEHUA IJI CYMM HE3ABHCHUMEIX CIVIANHBIX BEJIN-
YUH (1949). There are various points of contact with the treatises by
P. Lévy [76] and by H. Cramér [21], but much of the material in the book
has been hitherto available only in periodical articles, many of which are
in Russian. The systematic account presented here combines generality
with simplicity, making some of the most important and difficult parts of
the theory of probability easily accessible to the reader. Beyond a knowl-
edge of the calculus on the level of, say, Hardy’s Pure Mathematics, the
book is formally self-contained. However, a certain amount of mathemati-
cal maturity, perhaps a touch of single-minded perfectionism, is needed to
penetrate the depth and appreciate the classic beauty of this definitive
work.

It is hoped that the English translation may serve both as a standard
reference on: the subject and as a text or supplementary reading for ad-
vanced courses in probability. Part of the book may also be used to suit

other needs. For example, Chapters 1 and 2 may serve as the basis for any

rigorous course in probability. Readers who are interested in learning the
fundamental facts about stable laws and the more general infinitely divi-
sible laws may then go on to §§ 16-18 and §§ 33-34. Those who are interested
in the (weak) law of large numbers, the central limit theorem, and the
analogous limit theorem leading to the Poisson law in their simpler formu-
lations may find their needs met in § 21. Those who are interested in asymp-
totic expansions will need only Chapters 1, 2, 8, and 9; in particular,
§§ 4647, 49, and 51 are elementary and will be found useful for many appli-
, cations.

Now a few words about the translation as compared with the original.
There are two major textual changes in the English edition. The first
oceurs in § 32, where 2 mistake found in the original necessitated the dele-
tion of several paragraphs there and thereafter. The details are explained
in the second half of Appendix II. The second change occurs in §§ 4647,
where I have incorporated a substantial improvement from the 1951
Hungarian translation; see the Translator’s Note to Theorem 1 of § 46.

Some minor corrections, including those of misprints, are made without
mention; in a few places I have profited by the Hungarian edition which
corrected some of the errors in the Russian edition. In other cases where

I found fault with the Russian text, I have added a note in addition to, or

instead of, changing the text. As a result, about fifty such notes are
appended. These Translator’s Notes are also used to supply references

omitted by the authors and to add further explanatory remarks. In one
v
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case, namely in connection with Theorem 1 of § 32, where a rather long
note would be needed, I have put the added material in the first part of
Appendix II. :
Appendix I was written by J. L. Doob and should be of interest to the
reader who may be puzzled by the measure-theoretic complications in
+ Chapter 1. ' e
Of the many friends who have lent me assistance of one kind or another,
the following persons deserve special mention: J. L. Doob, for a variety of
advice and aid; F. J. Dyson, for consultations on the Russian language;
G. A. Hunt, for critically reading the manuscript; J. V. Wehausen, for
helping with the Bibliography; J. Wolfowitz, for encouragement in the
rather thankless job of translating, Miss Madelyn M. Keady typed the
manusecript expertly and tirelessly, and my only regret is that we did not
fully utilize her flawless efforts, since the formula matter was reproduced
directly from the Russian edition to reduce the cost of printing. The under-
taking of the translation was part of a project at Cornell University in
1052-1953, under a contract with the Air Research and Development
Command, whose support is gratefully acknowledged here. )

K. L. C.
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PREFACE
1

In the formal construction of a course in the theory of probability, limit
theorems appear as a kind of superstructure over elementary chapters,
in which all problems have finite, purely arithmetical character. In reality,
however, the epistemological value of the theory of probability is revealed
only by limit theorems. Moreover, without limit theorems it is impossible
to understand the real content of the primary concept of all our sciences —
the concept of probability. In fact, all epistemologic value of the theory of
probability is based on this: that large-scale random phenomena in their
collective action create strict, nonrandom regularity. The very concept of
mathematical probability would be fruitless if it did not find its realization
in the frequency of occurrence of events under large-scale repetition of :
uniform conditions (a realization which is always approximate and not
wholly reliable, but that becomes, in principle, arbitrarily precise and
reliable as the number of repetitions increases).

Therefore the elementary arithmetical caleulations of probabilities re-
lating to games of chance, in the works of Pascal and Fermat, can be
considered only as the pre-history of the theory of probability, whlle its
proper history began with the limit theorems of Bernoulli ([3], 1713) and
de Moivre ([86], 1730). The fundamental importance of the result of de
- Moivre was completely revealed by Laplace ([72], 1812). To the limit
theorems of Bernoulli and de Moivre-Laplace it is natural to add three
more limit theorems of Poisson as the principal achievements of the theory
of probablhty before Chebyshev. One of them generalizes the theorem of
Bernoulh another the theorem of de Moivre-Laplace, and the third leads
to the so-called Poisson law of distribution. For a clear understanding of
what follows it is useful to cite here somewhat modernized formulations of
the five limit theorems enumerated above.

The first four deal with & sequence of independent events

8. 8 6s ...

We shall denote the probabilities of these events by #
Pn=P (&),

1
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and the number of actually occurring events among the first n events
& 8” 89’ s sy sﬂ

by ua. In the first two theorems all p, have the same value p (p # 0, p # 1).
1. BernouLLr’s THEOREM. For every ¢ > 0

P(I'—:l!‘——-—pl>e — 0.

as.m — 0,
2. LarrAacE’S THEOREM.

Z 2
1 —-—
P{ ] }—»-—J‘e 2dz
V np (1 —Pp) V2 J
asn — oo uniformly with respect to z, and 2.
In the next two theorems p, may depend on 7, but subject to the con-

dition that the series

2 Pn (l '—'pn)
diverges. We set

) pl+p2+"'+pn=‘4m
p1(1—p)+pa(l—pg)+ ... 4 Pa(1—pa) =Bn.

3. Law oF LaArGE NumBERS IN PoissoN’s ForM. For every ¢ > 0
I A
P(fr=2|>e)o
.a8 n — o,

4. CenTRAL LimiT THEOREM IN Poisson’s Forwm.

2y g1
P{zl<f—'!;—’q”<z,}—>}/—;=u fe——’-dz
n °

28 n — oo uniformly with respect to z; and z.

The fifth of the theorems we are interested in deals with a scheme of
events
6,

821‘ 529’



PREFACE 3

in which the events in the same row are mutually independent and have .
the same probability p., depending only on the index of the row. We denote
by ua the number of events in the nth row which actually occur.

5. PoissonN’s Limir THEOREM FOR RARE EvEnTs. If

np, — a
as n — o0, then
am
P (pp=m) - me'“-

By introducing the random variables

‘ { 1 if & occurs,
fe =

0 if & does not occur,
we can write

Pn=551+eta+ $ 2 +ES,.’

in Theorems 1, 2, 3, 4, and
‘.l.”= Eﬂm +E‘n2+ P +Esm.

" in Theorem 5.

This makes it possible to include all five limit theorems enumerated
above as very special cases of limit theorems concerning sums of independent
random variables.

The idea that the normal probability distribution

! _=
P(C<z)=—-_V—'_—2; fe % dz,

- Q0

‘which turned out to be the limit in Theorems 2 and 4, must also appear in
- a more general problem about the limit distribution of the sum of a large
number of individually negligible independent summands is one of the
- essential ideas of the theory of errors developed by Gauss. However, in
the matter of rigorous proofs Gauss did not reach results equivalent to
the theorem of de Moivre-Laplace.

Effective methods for the rigorous proof of limit theorems concerning
sums ‘of arbitrarily distributed independent variables were created in the
~ second half of the nineteenth century by Chebyshev. His classical work

opened a new period of development of the entire theory of probability.

e oNAREE, B SE BEPDFE 5 0] ;. www. ertongbook. com
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All of Chebyshev’s efforts were devoted to the solution of two prob—
lems. Cofisider a sequence of independent random variables

Bis 8 ooy By w0

having finite mathematical expectations
: = ME,
and finite variances

: bh =D, =M (¢, — a,)~.

Put ‘

L=t +&+ ... 45
Ap=a,+a,+ ... +ay,
By =i+ b3+ ... + ba-

First ProBrLEM. What additional conditions ensure the law of large
‘numbers: for every ¢ > 0

P(|g—%|>0) o
asn—o?
Seconp ProbrEM. What additional conditions ensure the ceniral limat
theorem:
Fy it 1 -
P( Z, <z)—> ,___hfs z

—®

a8 1 — o0 uniformly with respect to 2?
For application to the first problem the method developed by Cheby-
shev in his work ([16], 1867) requires only the condition

 By,=o(n),

This is usua.lly’ called Markov’s condition, since Markov first pointed out
clearly the degree of generality of Chebyshev’s reasoning. The law of large
.numbers under Markov’s condition not only includes Theorems 1 and 2 °
of Bernoulli and Poisson, but in the great majority of applications more or
less completely settles the question for sums of independent summands.

The solution of the second problem was considerably harder. For it
Chebyshev created the method of moments, which is one of his most
important achievements in-mathematics. The solutlon given by Chebyshev
in his paper ([17], 1887) is based on a lemma which was proved only later
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by Markov ([82], 1898). Soon afterwards the second problem of Chebyshev
was solved by Lyapunov under considerably more general conditions by
another method ([79], 1900; [80], 1901). Subsequently Markov ’su'cceeded
in proving that the method of moments is capable of giving as general a
result as that obtained by Lyapunov. However, the method of Lyapunov
turned out in its further development to be much simpler and more power-
ful in application to the entire circle of problems concerning limit theorems
for sums of independent variables. This is the method of characteristic
functions, which is the principal method employed in our book.

The solution given by Lyapunov satisfies all the needs of the great
majority of applications. Nevertheless, we shall give instead of Lyapunov’s
theorem the solution of Chebyshev’s second probleth in the form of
Theorem 4 of § 21. The condition used there, namely Lindeberg’s condition
that for every ¢ > 0

lim 3 P{l&—a|>eBy} =0,

n > oo k=1

. is somewhat broader than Lyapunov’s condition. In its logical structure it
is even simpler than Lyapunov’s condition

Ca

fn-> o0 Bf,'*' '
where
Co=0,-+...4cy

¢ == M| By — a; |33

3
Let us turn to the simpler special case of a sequence

El! EQ: Tty Em e

of independent identically distributed variables. In this case, the central
limit theorem is applicable without any additional conditions other than
the mere existence of the mathematical expectations

and variances

(see Theorem 4 of § 35). However, it is erroneous to conclude, even for the

. case of identically distributed summands, that there exist no really inter-
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esting limit theorems in which the limit laws are different from the normal
law.t ‘

In order to show by an example that such an opinion is only deep-rooted
prejudice, we now consider the simple, classical scheme of random motion
on a straight line, corresponding to the game of “heads or tails”:

1(0) =0,
n (£)+ 1 with probability %
"1 (£) — 1 with probability %

(1) =

independently of what
(1), 1(2), ..., 1)

are.
It is well known that this scheme is the simplest of a long series of

random motion schemes which have great importance in the most varied

applications of the theory of probability, very remote from games of chance.
We number in an increasing sequence all the values of ¢ for which

'1] (t) = 0.
We obtain (with probability one) an infinite sequence

3 =Ty < T o <1< .
' The differences

3

—
'!”—"

n T “n-t

form a sequence of independent and identically distributed random vari-
ables. Each of the variables £, takes only positive even values with proba—
bilities
om (2m —2)!
Pm=P (n=2m) = L0 2"

Since

1
Pm ~ 2 V_r?m'/’ '
asymptotically as n — oo, the mathematical expectation

<o
ME, =2 3 mp,
m=1
is infinite. Nevertheless, the sums

=8t G+ i,

T Translator’s note. The word “law” is taken to be synonymous with “distribu-
tion” in such contexts. In ‘“‘the normal (or Poisson) law” often the correspondmg
type (see § 10) is meant.

)
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with suitable normalization, are subject in the limit to a completely de-
termined law of distribution:

0 for 2<K0,
3

e P( <2) _sz for z2>0

L (=
n-»>c0 m !
(see in this connection Theorem 5 of § 35 and the end of § 34).
The reader should turn his attention to n? in the denominator of the
expression
nne °

In the case of the sum ¢, of identically distributed independent variables
with finite variances the denominator of the expression

‘u"‘An

By

in the central limit theorem would have the order v/n. Comparison of
these two special cases compels us to pose this general problem: Under
what conditions on identically distributed independent variables

El’ Ea, ° o ey En, .

can g limit relation
P{ Ln—4n A” <z }—»V(z)
hold, where A, and B, are constants, and what kind of limit laws V(z)

can appear?
The question about the class of -limit laws which can possibly appear

. in the situation indicated above was completely settled by A. Ya. Khint-

chine. It turned out that up to linear transformations this class consists
only of the normal law, occupying a special position; the unitary law,

0 for x<O,
e(x)={1 for x>0,

and a family of distribution laws with infinite variances, depending on
two parameters (« and 8 in the notations of Ch. 7). All these distribution
laws, called “stable” because of circumstances which are explained in § 33,
deserve the most serious attention. It is probable that the scope of applied
problems in which they play an essential role will become in due course
rather wide.
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Poisson’s limit theorem for rare events should long ago have suggested
that even in the case of finite variances there can exist interesting and useful
limit theorems concerning sums of independent variables and leading to

/ distribution laws essentially different from the normal. To obtain them in
. a systematic way, it is natural to turn to the scheme of a double sequence
of random variables

(Enh Enq,'.-, Enmn)v n=1, 2, 3,...,

where the random variables of the same row are independent, and to con-
sider the sums

G ="ty Emg - o F-Enmy -

The simplest and most important case is that in which all variables
£.. in the same row are identically distributed. The problem consists as
before in classifying the conditions under which a limit relation

P{glecz} v e

n

" can hold and what kind of laws V() can appear. Here, of course, it is
natural to consider only the case where

n, — co.

It is curious that if all random variables é.x can take only two values
2z’ and z'’ independent of the indices n and k, then the only possible limit
laws (up to 2 linear transformation) will be the normal law, the improper
law e(z) and the family of Poisson laws with one parameter a (see Kozul-
yaev [70]).

The class of possible limit laws in such a formulation of the problem -
coincides with the class of infinitely divisible laws, to which Chapter 3 is
devoted. Naturally, it contains all the stable laws and Poisson’s law. The
corresponding limit theorems are proved in Chapter 4. Here we only
mention that for a better understanding of their intuitive meaning it may
be useful for the reader to become acquainted with a special case treated
in the book of A. Ya. Khintchine [53] under the name of “generalized limit
theorem of Poisson.” This elementary limit theorem leads only to those
infinitely divisible laws with characteristic funetions of the form

£(£) = exp {cf(em_-l)dF(u)} |
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(see § 16). Distribution laws of this type have as many finite moments as
does their generating distribution F(u). It is possible to indicate many
physical and technical problems leading to them.

Among infinitely divisible laws, belonging neither to the class of stable
laws nor to that of laws of the special type just mentioned, we mention
also a family of distributions well known in mathematical statistics. They
are given by the incomplete gamma functions

0 for 2<0,

V()= 1 .
) 'P—(—;)fz'-le-'dz for: z>8;
0

depending on the parameter @ > 0 (see Example 4, § 17). To this family
belongs in particular (for @ = 1), the exponential distribution

for 20,
V(z)={l-—e"z for. . 2>0.

If we renounce the assumption that all the random variables in the
same row have the same law of distribution, then the problem of deter-
mining all possible laws V(z), in its exact formulation above, becomes
meaningless. The limit law V() can be absolutely arbitrary. This is mdeed' :
natural, since now the requirement'm, — oo is illusory. It does not prevent,
for example, that in each row one single summand £,x plays the dominating
role. Meaningful results, comformable to the original lofty conception of
the classical limit theorems in the theory of probability, are obtained only
under the following additional requirement: for every ¢ > 0 there should

" exist constants a.. such that ‘

sup PHEnk‘_‘ank|>‘Bn}"’0'
1<k my

This requirement of the “asymptotic negligibility” of the variation of each
individual summand in comparison with the chosen scale B, for the sum’
¢» is quite natural. In § 20 it is introduced in the particular case B, = 1
under the name ‘‘asymptotic constancy.”

A. Ya. Khintchine proved that with this restriction the only posmble
limit laws in the case of arbitrarily distributed terms are the same infinitely
divisible laws as in the identieally distributed case (§ 24). Therefore it is
quite natural that the infinitely divisible laws turn out to be the central
concept throughout the first part of this book. It seems to us that the
theory of these laws and the general limit theorems connected with them

LA | ertongnook



