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PREFACE

This book contains a revised and expanded version of
the lecture notes of two seminar series given during the
academic year 1976/77 at the Department of Mathematics and
Statistics of the University of Calgary, and in the summer of
1978 at the Institute of Theoretical Physics of the Technical
University Clausthal., The aim of the seminars was to present
geometric quantization from the point of view of its applica-
tions to quantum mechanics, and to introduce the quantum
dynamics of various physical systems as the result of the
geometric quantization of the classical dynamics of these
systems.

The group representation aspects of geometric quantiza-
tion as well as proofs of the existence and the uniqueness of
the introduced structures can be found in the expository
papers of Blattner, Kostant, Sternberg and Wolf, and also in
the references quoted in these papers. The books of Souriau
(1970) and Simms and Woodhouse (1976) present the theory of
geometric quantization and its relationship to quantum mech-
anics. The purpose of the present book is to complement the
preceding ones by including new developments of the theory and
emphasizing the computations leading to results in quantum
mechanics.

I am greatly indebted to the participants of the
seminars, in particular John Baxter, Eugene Couch, Jan
Tarski, and Peter Zvengrowski, for encouragement and enlighten-
ing discussions, and to Bertram Kostant, John Rawnsley and
David Simms for their interest in this work and their very

helpful suggestions. Special thanks are due to Liisa Heikkila,
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Pat Dalgetty, and Katherine MacDougall for careful and patient
typing and retyping of the manuscript, and to Mark Gotay for
editing the final draft of this work.

The work on this project was started during the 1976
Summer Research Institute of the Canadian Mathematical Con-
gress (Victoria branch) and it was partially supported by the
Natural Sciences and Engineering Research Council of Canada
under grant No. A8091. During the summer of 1978 the author
was a guest of the Institute of Theoretical Physics of the
Technical University Clausthal and the hospitality of Prof.
H.D. Doebner in Clausthal is gratefully acknowledged. The
work on the final draft of the manuscript was facilitated by
a Killam Resident Fellowship held by the author at the

University of Calgary in Fall 1978.

Calgary, September, 1979 Jedrzej éniatycki
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1. INTRODUCTION

1.1. Background

A classical system is described by the Poisson algebra
of functions on the phase space of the system. Quantiza-
tion associates to each classical system a Hilbert space &
of quantum states and defines a map &£ from a subset of the
Poisson algebra to the space of symmetric operators on &
The domain of 2 consists of all "Z-quantizable" functionms.
The definition of 2 requires some additional structure on
the phase space. The functions which generate one-parameter
groups of canonical transformations preserving this additional
structure are 2-quantizable. They form a subalgebra of the

Poisson algebra satisfying
[ 2f,, 2f,] = in2[£,,£,],
where [fl,le denotes the Poisson bracket of fl and fz.
Two quantizations £ and 2' of the same classical
system are equivalent if the domains of £ and £2' coincide
and there exists a unitary operator % between the corres-

ponding representation spaces such that, for each quantizable

function f,
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%(2f) = (2'H)% .

In physics, one is not interested in the whole Poisson algebra
but rather in its subset consisting of functions with a definite
physical interpretation, e.g., energy, momentum, and so on.
Therefore, one may weaken the notion of equivalence of quantiza-
tions by requiring only that the physically interesting func-
tions be contained in the intersection of the domains of @
and 2', and that the operator % intertwine the quantiza-
tions of these functions. This weaker notion of equivalence
depends very much on our knowledge of the physical system
under consideration and our judgement as to which functions
are physically important.

There is a striking similarity between the canonical
quantization of classical systems and the orbit method of
construction of irreducible unitary representations of Lie
groups. This similarity was recognized by Kostant, who wrote
in the introduction of his 1970 paper entitled 'Quantization
and Unitary Representations':

. . We have found that when the notion of what

the physicists mean by quantizing a function is

suitably generalized and made rigorous, one may

develop a theory which goes a long way towards
constructing all the irreducible unitary repre-
sentations of a connected Lie group. In the com-

pact case it encompasses the Borel-Weil theorem.

Generalizing Kirillov's result on nilpotent

groups, L. Auslander and I have shown that it

yields all the irreducible unitary representa-

tions of a solvable group of type I. (Also a
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criterion for being of type I is simply expressed

in terms of the theory.) For the semi-simple

case, by results of Harish-Chandra and Schmid,

it appears that enough representations are con-

structed this way to decompose the regular

representation.

The geometric formulation of the canonical quantiza-
tion scheme in physics was studied independently by Souriau.
A comprehensive presentation of Souriau's theory of geometric
quantization is contained in his book entitled '"Structure des
Systémes Dynamiques' published in 1970. The works of Kostant
and Souriau are the sources of the geometric quantization
theory, also referred to as the "Kostant-Souriau theory."

The next fundamental development of the geometric

quantization theory was due to Blattner, Kostant, and Sternberg

[cf. Blattner (1973)]. It comnsists of the construction of a
sesquilinear pairing between the representation spaces of the
same classical system, usually referred to as a "Blattner-
Kostant-Sternberg kernel.'" In some cases the pairing leads
to the operator % intertwining the quantizations. As a re-
sult, one obtains a larger class of quantizable functions and
the means of studying the equivalence of quantizations.
Geometric quantization is essentially a globalization
of the canonical quantization scheme in which the additional
structure needed for quantization is explicitly expressed in
geometric terms. The theory, only about a decade old, is at a
preliminary stage of its development. At present, it provides
a unified framework for the quantization of classical systems

which, when applied to most classical systems of physical
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interest, yields the expected quantum theories for these sys-
tems and removes some of the ambiguities left by other quantiza-
tion schemes. It enables us to pose questions about the
quantum theories corresponding to a given classical system

and gives some partial answers. However, many issues re-

main unresolved. Among them are basic questions about the
structure of the representation space, the search for appro-
priate conditions guaranteeing the convergence of the inte-
grals involved in the Blattner-Kostant-Sternberg kernels and the
unitarity of the intertwining operators defined by these ker-
nels, etc. On a more specific level, there are cases when the
geometric quantization of functions of physical interest

poses such technical or theoretical difficulties that the
corresponding quantum operators remain ambiguous. Some of
these problems will be solved within the framework of the
present theory. The others might require a modification of

the theory; there are already indications that some modifica-
tions of the theory are inevitable.

The aim of this book is to present the theory of geo-
metric quantization from the point of view of its applications
to quantum mechanics, and to introduce the quantum dynamics
of various physical systems as the result of the geometric
quantization of the classical dynamics of these systems. It
is assumed that the reader is familiar with classical and
quantum mechanics and with the geometry of manifolds including
the theory of connections. The proofs of the existence and
the uniqueness of the structures introduced are omitted. On the
other hand, all of the basic steps involved in computations

are given, even though they may involve standard techniques.



1.2. Hamiltonian dynamics S

A chapter by chapter description of the contents of

the book follows.

1.2, Hamiltonian dynamics

A comprehensive exposition of classical mechanics con-
taining references to the original papers is given by
Whittaker (1961). The modern differential geometric approach
adopted here follows Abraham and Marsden (1978).

The phase space of a dynamical system is a smooth man-
fold X endowed with a symplectic form w defined by the
Lagrange bracket. To each smooth function f on X, there
is associated the Hamiltonian vector field Ef of f, defined
by

Eﬁjw = -df,

as well as the one-parameter group ¢ft of canonical transfor-
mations of (X,w) generated by f which is obtained by inte-
grating the vector field Ef. Define local coordinates

(ql,...,qn,pl,...,pn) on X, where n = % dim X, such that

w=2dh}df.
i

In such a '"canonical" chart, the integral curves of Ef satisfy
the canonical equations of Hamilton with the Hamiltonian f£f.

The mapping f w» Ef pulls back the Lie algebra struc-
ture from the space of smooth vector fields on X to the
space of smooth functions on X. The space of smooth func-
tions on X with this induced Lie algebra structure is called
the Poigson algebra of (X,uw).

The Hamiltonian formulation can be extended to

relativistic dynamics. The Hamiltonian vector field of the
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mass-squared function yields the covariant form of the equa-
tions of motion. The interaction with an external electro-
magnetic field f 1is taken into account by adding the term
ef to the symplectic form, where e is the charge of the
particle. This approach to the relativistic dynamics of a
charged particle is due to Souriau (1970). It has the advan-
tage that it enables one to discuss the Hamiltonian dynamics
of a relativistic charged particle without any reference to
the electromagnetic potentials.

The evolution space formulation of Newtonian dynamics
is due to Lichnerowicz (1943). For time-dependent dynamics,
the evolution space formulation is more appropriate than the
phase space formulation which requires a time-dependent
Hamiltonian. The evolution space formulation of single
particle dynamics is given following §niatycki and Tulczyjew

(1972); see also Souriau (1970).

1.3, Prequantization

In the first step of geometric quantization one as-
sociates, to each smooth function f on X, a linear operator

Pf such that %1 1is the identity operator and

[ P£, FPg) = in Plf,g).

This is done by introducing a complex line bundle L over X
with a connection ¥V and an invariant Hermitian form <,>
such that

curvature V = - lu.

Such a line bundle exists if and only if h_lw defines an

integral de Rham cohomology class. This condition, referred
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to as the prequantization condition, gives rise to the quanti-
zation of charge in Sec. 10.1 and spin in Sec. 11.2. The
operators £ act on the space of sections of L as follows.
The one-parameter group ¢ft of canonical transformations
generated by £ has a unique 1ift to a one-parameter group
of connection preserving transformations of L which defines
the action of ¢ft on the space of sections of L. The

operator % is then defined by
_ .e  d t
PEIN] = ik (6 W) | (g

This definition also makes sense if f defines only a local
one-parameter group of local canonical transformations.

For a function f on X such that the Hamiltonian
vector field Ef is complete, the one-parameter group of
linear transformations X ~ ¢ft preserves the scalar product
given by

_ by
<Aqlay> = IX<A1,A2> W',

Hence, the operator %r, defined originally on smooth sections
of L, extends to a self-adjoint operator on the Hilbert

space of square integrable sections of L. However, if we
wanted to give a probabilistic interpretation to the scalar
product by associating to <A,2>(x) the probability density of
finding the '"quantum" state described by XA in the classical
state described by the point x in the phase space X, we
would violate the uncertainty principle since square integrable
sections of L «can have arbitrarily small support. The space
of all square integrable sections of L 1is too "big" to serve

as the space of wave functions.
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The prequantization of symplectic manifolds has been
studied independently by Kostant (1970a) and Souriau (1970).
Some physical implications of prequantization are discussed by
Elhadad (1974), Kostant (1972), Rawnsley (1972; 1974), Renuard
(1969), Simms (1972, 1973a,b), Souriau (1970), Streater
(1967), and §niatycki (1974). See also Slawianowski (1971,
1972) and Weinstein (1973).

The formulation of the theory of connections in complex
line bundles given in Sec. 3.1 follows the general theory of
connections given in Kobayashi and Nomizu (1963), modified by
the identification of the complex line bundle without the
zero section with the associated principal fibre bundle. The
presentation of prequantization given in Sections 3.2 and 3.3
follows essentially the exposition of Kostant (1970a), where
one may find the proofs of the theorems regarding the existence

and the uniqueness of the prequantization structures.

1.4. Representation space

In order to reduce the prequantization representation
one has to introduce a classical counterpart of a complete
set of commuting observables. A first choice would be a set

of n independent functions fl""’fn on X satisfying

[fi’fj] =0 for i,j = 1,2,...,n
such that their Hamiltonian vector fields are complete.
The complex linear combinations of the Hamiltonian vector

fields Ef ,...,Ef give rise to a complex distribution F
1 n

on X such that
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[F,F] < F
dimC F=1%dim X
w|F x F = 0.

For many phase spaces of interest there does not exist such a
set of functions. If one drops the assumption that the fi
be real and globally defined one is led to the notion of a
polarization of (X,w), that is, a complex distribution

F on X satisfying the conditions given above. For techni-

cal reasons we assume that

FnF nox

=)
n

and

tri
1

(F+F) nox

are involutive distributions on X, and that the spaces X/D
and X/E of the integral manifolds of D and E, respectively,
are quotient manifolds of X with projections ™ and Mo
A polarization F satisfying these additional conditions is
called strongly admissible.

Given a polarization F of (X,w), one could take the
space of sections of the prequantization line bundle L which
are covariantly constant along F to form the representation
space. However, if A and xz are sections of L covari-
antly constant along F, their Hermitian product <A1,A2>
is a function constant along D and its integral over X
diverges unless the leaves of D are compact. Thus, we should
integrate <A1,A2> over X/D, but we do not have a natural
measure on X/D. In order to circumvent this difficulty, one

introduces a bundle VATF sections of which can be paired to

yield densities on X/D. The bundle Va"F 1leads also to



