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Topological and Algebraic Geometry
Methods in Contemporary
Mathematical Physics .

In the course of the last twenty years the methods of homotopy topology
as well as those of the algebraic geometry of Riemann surfaces, Abelian
varieties, and the related theta functions have begun to be used extensively
in various branches of contemporary theoretical and mathematical physics.
As examples, we mention that in the theory of so-called “liquid crystals”,
superfluid *He, Yang-Mills gauge fields, etc., many important solutions of
the nonlinear equations arising in these theories have been found, which
have nontrivial topological properties (point and line singularities in liquid
crystals and >He, associated with the homotopy grounds 7 and 75 of
various manifolds; the Polyakov—"t Hooft monopole, instantons, and
various kinds of topologically nontrivial solutions). The methods of
topology and algebraic geometry are known to play an important role in
the theory of periodic solutions of equations of the Korteweg—deVries type
(KdV) in the inverse problem method.

This study is a sequel to the survey by V. G. Drinfeld, 1. M. Krichever,
Y. I. Manin and S. P. Novikov, “Methods of Algebraic Geometry

in Contemporary Mathematical Physics”, first published in Soviet
Science Reviews section C, by Harwood Academic Publishers (1980)
and republished by Cambridge Scientific Publishers in 2004.

The present survey can be regarded as its continuation, containing
further material on this fundamental theme.
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Preface to the Series

One of the main motivation for publishing the series Soviet Scientific
Reviews: Mathematical Physics Reviews in 1980 was to contribute to the
development of scientific co-operation and better understanding among
scientists by overcoming the language, communication and distribution
difficulties. The review papers in this series were written by the very best
Soviet experts and are now acknowledged as classic papers in particular
areas of mathematics and mathematical physics. Written as scientific front
line reviews, many of them could be used as reference books for the
modern generation of students and young researchers. The lack of
corresponding literature and ever and ever growing interest in theoretical
and mathematical physics and the remarkable results of recent years in
solition theory, the theory of quantum topological models and their
applications in topology, algebraic and differential geometey are the main
reasons for publishing the updated and annotated editions of these classic
papers in a new series entitled Classic Reviews in Mathematics and
Mathematical Physics.

We hope that the series will be a valuable addition to the literature already
available. By making each paper available as a separate publication and
changing distribution policy we hope to address a wider audience and see
at least some of the volumes not only on library shelves but at work, on
desks of our readers.

S. P. Novikov
1. M. Krichever
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Chapter 1

HAMILTONIAN FORMALISM AND
VARIATIONAL-TOPOLOGICAL
METHODS FOR FINDING PERIODIC
TRAJECTORIES OF CONSERVATIVE
DYNAMICAL SYSTEMS

S. P. NOVIKOV

1.0 Introduction

Dynamical systems describing real physical processes are always (or, “as a
rule”) Hamiltonian in one sense or another, if we can neglect energy dissi-
pation. Not infrequently the Hamiltonian formalism has no “obvious” origin
from a Lagrangian formalism as the result of a Legendre transformation and
may not even admit global canonical coordinates. This applies in particular
to many systems of hydrodynamical origin. In what follows (cf. Sections 1.1
and 1.2) we shall discuss various aspects of the Hamiltonian formalism in
more detail. This is one of the purposes of this part of the survey. The
other main purpose of this part is the description of topological methods for
studying periodic trajectories. The point is that the overwhelming majority
of nontrivial conservative systems with even two degrees of freedom are
nonintegrable. As a result a complete investigation is made extremely diffi-
cult. After stationary points, periodic solutions are the simplest objects of the
qualitative theory of dynamical systems; nevertheless even the solution of
the problem of the existence of periodic trajectories is often highly nontrivial
and requires the use of topological methods. The most developed and widely
used method of this type is the theory of Morse and Lyusternik—Shnirelman
(LShM), which combines the calculus of variations with the topology of
functional spaces consisting of closed contours (curves) in the configuration
space under study (cf. Section 1.3).



2 S. P. NOVIKOV

The use of the LShM theory requires, however, the use of a strictly positive
definite Lagrangian formalism. It is thus already clear that in more general
Hamiltonian systems, that have no Lagrangian origin, this theory is not
generally applicable. Variational principles on phase trajectories never lead
to positive definite functionals. Some extremely interesting systems—which
we call systems of Kirchhoff type— curiously enough reduce to a problem
that is mathematically isomorphic to the theory of a charged particle in the
magnetic field of a “Dirac monopole” (cf. Section 1.4). Among systems of
Kirchhoff type are, for example:

(a) the Kirchhoff equations of motion of a rigid body in an ideal com-
pressible fluid (without vortices), at rest at infinity;

(b) the equation of motion of a rigid body with a fixed point in an axially
symmetric force field;

(c) the Leggett equation for the spin dynamics in the low-temperature
A and B phases of *He (nuclear magnetic resonance).

In such systems the equations of motion can in the last analysis be reduced
to the principle of extremal action S. However, the action S is, from the
global point of view a “multivalued” functional in the space of closed con-
tours (smooth curves) on the sphere S 2 which after reduction serves as the
configuration space. This means that 85 is a single-valued quantity (1-form
or convector) on the space of contours, but the “integrals over cycles” in
the contour space of the quantity §S are nontrivial. Thus S is a multivalued
functional (on the circle, for example, d¢ is a single-valued 1-form, but ¢ is
multivalued function).

One of the purposes of Section 1.5 is to extend the topological methods
of the LShM theory to multivalued functionals. This enables us to establish
the existence of a large number of periodic orbits for systems of Kirchhoff
type (cf. Section 1.5). Essentially we here present results of the papers [1],
(2], [3].

1.1 Hamiltonian Formalism. Simplest Examples.
Systems of Kirchhoff Type

From the modern point of view. “Poisson brackets” are the basis of the
Hamiltonian formalism. Let y' be coordinates on a manifold (“phase space”)
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and f(y), g(h) two function; the Poisson bracket is given by the tensor
field A/ (y)

{f.8} =h"f'(y>-§§%. ) M
The following properties must be satisfied:
a) bilinearity and skew symmetry
{f. 8} =—{s, fk @)
b) the Leibnitz identity
{fg,h} = flg.h}+glf. h}; 2"
c¢) the Jacobi identity
{{f. g} Y+ {th, f} 8} +{{g. h}, f1 =0, 2")
By definition, Hamiltonian systems have the form
f=1{fH) 3)

where £ is any function and H is the Hamiltonian. There may be nontrivial
(perhaps assigned locally on the manifold) functions f; such that

{fi-g}=0 “4)

for any function g(y). In the case the Poisson bracket is said to be “degen-
erate”: the matrix #%/ (y) is degenerate. If we have found all such quantities
fi(y), then on their common level surface

fi(y) = const ()

the Poisson bracket becomes nondegenerate.
Let z9 be the coordinates on the level surface (5). The restriction of the
tensor h4/(z) to this surface is nondegenerate, and has the inverse matrix

hgh'" =8} (©6)
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The inverse matrix determines a 2-form
Q = hy1dz? Ad7. )

From (2) it follows that the form €2 is closed:

ohgi x Ohiq & a_hi

a9zt 9zl 9z9 ©)
Let us consider the main types of phase spaces.
Type I Classical Hamiltonian formalism and variational principles
Let (y) = (x',...,x", pi1...., pn), the matrix K/ is constant and non-
degenerate:
(0 1 0)
h = h;j = ¢ ] = comst. 8)

-1 0

\ 0 ~1 0)
Equation (4) has the form:
, _OH . oH

xl

“a P e
The coordinates (x, p) are said to be canonical. They can always be
introduced locally for nondegenerate Poisson brackets (Darboux’s theorem).
If H(x, p) is the Hamiltonian, then we have a Lagrangian L(x, x), where
x is the configuration space, determined from the equations

. 9H .
x'=—, L=pix'—H. 8"
api
It is assumel that the equation X' = 9H/dp; can be solved for the vari-

ables pj. The Hamiltonian equations (4) are obtained from the variational
principle 85 = 0, where:

S— ] L, #)dt. )
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Type Il Hamiltonian formalism and Lie algebras

Now let us consider the next more complicated case, when the tensor hiJ is
not constant, but depends linearly on the coordinates (y)

. iy . "
Wi =cly*, ¢ =const. (10)
We consider the set L of all linear functions on the phase space, which we
denote by L*. For the basis linear forms, the coordinates yi , there is defined
an operation of “commutation” (y1 € I* = L),
Y. ¥1=C/y* =iy, ¥} an

From the requirements (2', 2, 2”) it follows that the operation (11) converts
the linear space L into a Lie algebra, where the adjoint space L* is the phase
space for the Poisson bracket (10).

Examples

1. The basic example of a Hamiltonian formalism of type I is the phase
space T*(M), the space of covectors (with lower indices) on the manifold
M (configuration space). The manifold M may even be infinite-dimensional
(space of fields g(x) of any type, where x is one of the “indices” in the
formulas). In the finite-dimensional case we have local coordinates x! and
conjugate momenta p;, with Poisson brackets

', xi} = {pi, pj} =0, (', pj}=25 (12)

and the form
Qo = dei Adp;.

In the infinite-dimensional case we have fields and Poisson brackets of
the form

{g' (), pj(»)} = 858(x — y)
{¢' ), ¢’ O} = {pix), pj(3)} = 0.

2. It is important to consider also Poisson brackets of the form (12),
distorted in addition by an “external field” F;;(x),

(13)

l x} =0, {x',pj =85, Apipjt=F;® (14)
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where the 2-form F = F;jdx’ A dx/ is closed,
dF =0.
We get a 2-form
Q=) dx' Adp;+ ) Fjdx' ndx) =Qy+F. (15)

The equations of motion with the Hamiltonian H(x, p) and the Poisson
bracket (14) represent (for n = 2, 3) the equations of motion of a charged
particle in an external magnetic field F;; (or an electromagnetic field,
forn = 4).

3. Somewhat more general, a priori, but as a rule reducible to the form
(14), are Poisson brackets on the space T*(M), satisfying the requirement:
any pair of functions (f, g) on the base M (independent of the variables
pi on the fibre, consisting of all covectors with a lower index) have a null
Poisson bracket

{f.g}=0. (16)

We call the property (16) “variational admissibility” of the Poisson bracket
on T*(M). Obviously the bracket (14) is variationally admissible. As we
know, over sufficiently small regions any (nondegenerate) Poisson bracket
reduces to the form (12). Globally this is no longer so: if the form
is not exact, then the Poisson bracket does not reduce to the form (12).
Variationally admissible Poisson brackets probably always reduce globally
of the form (14), though this has not been rigorously shown; they reduce to
the simplest form (12) over any region where the form  is exact.

We now proceed to discuss examples of Poisson brackets of type II, asso-
ciated with Lie algebras.

1. Suppose that L is the Lie algebra of the group SO3. The Killing metric
is Euclidean, so we need not distinguish between L and L*. The Poisson
bracket of basis functions M; on L* has the form (11),

L ] .
{Mi, M} = €uMy, C; — €iji. (17)
There is a function M2 = > Miz, such that

(M?, M} =0, i=1,2.3. (18)
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Hamiltonian systems have the form
M; = (M;, H(M)). (19)

Suppose that Q' = dH/dM;; the Killing metric permits ug to make no
distinction between upper and lower indices. The equation (19) reduce to
the form of the “Euler equation”

M; =[M,Q]. 20)

This conclusion is valid for all compact Lie groups in which there is a
Killing metric, a euclidean metric on the Lie algebra, invariant under all
inner automorphisms

L— gLg™! 1)

where g is an element of the Lie group, and L is its Lie algebra. We recall
that the Poisson bracket (11) is invariant only with respect to the transfor-
mations (21). For the classical Euler equations of free rotation of a rigid
body we have

G=505, H=) aM}/2. (22)

€2 is the angular velocity of the body, and M is its angular momentum.

2. Many important systems that arise in hydrodynamics are associated
with the Lie algebra of the group E(3) of motions in the euclidean space R>.
This algebra is no longer semisimple. In the phase space L* there are 6
coordinates (M1, M2, M3, p1, p2, p3) and the Poisson brackets are

{Mi, M} = €My, (M, p;}=e€ijpr. {pi,p;}=0. (23)
The bracket (23) has a pair of independent functions:
A=) pl=p" fi= > Mip; = ps.
such that
{fg Mi} ={fq, Pi}=0, g=12. (24)

Let H(M, p) be the Hamiltonian. We introduce the notation u’ = 8 H/dp;,
o' = dH /dM;. The Hamiltonian equations take the “Kirchhoff form:

p=I[pxwl, M=[Mxowl+[pxul. (25)



8 S. P. NOVIKOV

Equations (25) coincide (for quadratic Hamiltonians H) with the Kirchhoff
equations for the motion of a rigid body in a liquid that is ideal, incom-
pressible, and at rest at infinity [4]. The motion of the liquid itself is assumed
to be potential. In this case, H is the energy, and M and p are the total
angular momentum and linear momentum of the body-liquid system in the
movable coordinate system rigidly attached to the body. The energy H is
assumed to be positive and quadratic in both variables M and p. Using the
transformations (21) the form H can be changed to

2H =Y aiM}+) bij(Mipj + piM;j)+ Y _cijpipj. (26)
Let us consider two other applications of Eqgs. (25):

A) The equations of motion of arigid body with a fixed point in an axisym-
metric force field with potential W (z) take the form (25). The corresponding
Hamiltonian has the form

H=> aM}/2+W('p) 27)

where [ is a vector determined by the position of the center of mass relative to
the inertial axis and the fixed point. The quantities p; here are dimensionless
and do not have the physical significance of momenta. They are the direction
cosines of some unit vector, i.e.,

fi=) =1 27)

B) The (Leggett) equation for the dynamics of the spin in the A-phase
of superfluid 3He also reduces to the form (25); this is the dynamics of the
spin-variables, the vectors (s, d), where d*> = 1 in analogy to (27). (Cf. the
survey of Brinkman and Cross in the book [5].) To get the Leggett equations
for nuclear magnetic resonance in the A-phase we must make the changes
in notation

M,' - 8, pi —> di
L]
(where s is the “magnitic moment”), and consider a Hamiltonian of
the form

1
: Eas2 + b(sid;)* + A(s; Hy) + W(d). (28)
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Herea, b, A are constants, H' is the external magnetic field, and the potential
W has the form:

W(d) = const - (I'd;)?. (28)

L )
Because of property (24) of the Poisson bracket (23), the quantity s;d; = f»
is equivalent to a constant in the equations of motion. Therefore the second
term in the Hamiltonian can simply be omitted:

1
H~H = Eas2 + Asi H; + W(d). (28")

The d-spin part of the so-called “order parameter” is a unit vector d*> = 1,
as already pointed out earlier.

3. There is also another phase, the B-phase of 3He, in which the Leggett
equation takes a form different from the classical top (cf., for example, the
survey of Brinkman and Cross in the book [5]).

In the state of hydrodynamic rest and with nonzero spin, the state in the
B-phase is determined by the pair: of the rotation matrix R = (R; i) €SO3
and (s;), i = 1, 2, 3, the “magnetic moment.”

The variables s; are coordinates in the adjoint space to the Lie algebra of
the group S O3, analogous to the angular momenta M;. The standard Poisson
bracket on T*(S03) in the variables (S,-,Rjk) is written as

{si,sj} = €ijksk,  {Rij, R} =0, {si,Rj1} =¢€;xRis.  (29)

The Hamiltonian of the Leggett system in the B-phase in an external magnetic
field has the form

1
H= Eas2 + bs; F; + V(cos6) (30)

where a and b are constants, F = (F;) is the external field, and

2

1
V(cos8) = const - (5 + 20058) : 31

R;; is the rotation through angle 6 around the axis n;, n2 = 1:

Rij = cos8d;;j + (1 — cos@)n;n; + sin Oe;jxny

(32)
1 +2cos@ = R;; = Sp(R;;).
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After the replacements
aSi = wi, Qji=¢€jriw; = (RR™")jk (33)

we obtain a Lagrangian system in the variables (R; i» Rij) onT*(503), where
the kinetic energy is determined by the two-sided invariant Killing metric,
and the potential energy V (cos 6) is invariant under inner automorphisms

R— gRg™!, s—>gs geSos. (34)

If the field F = (F;) is constant, then the whole Lagrangian is invariant
under the one-parameter group of transformations (34), where g belongs to
the group of rotations around the axis of the field F. Let us assume that
F = (F,0,0).

For zero field F = 0, the system admits the group S O3 of transformations
(34) and was completely integrated in [6]. The transformations (34) generate
a conserved vector (F = 0)

6
Aj=(1—cosb) l:n X (cot5s+[nxs]):| 35)
where, as for the ordinary angular momenta, the Poisson brackets are
1
{Ai, Aj} = €ijr Ax, {A,-, zasz-f-V(cosG)} =0. (36)

As pointed out by V. L. Golo [7], the variables sZ and 6, appearing in the
Hamiltonian when F = 0, generate a closed algebra of Poisson brackets
{sz, S|, 0}, where

S| = sin;, {S2, 9} = 23“

1+cosb , , (37

{510} =1, {s° )= 5% = sj).

sin 6
The quantity AZ = » Ai2 = (1 —cosf)(s* — sﬁ) has null Poisson bracket
with this whole subalgebra

{A?, 5%} = (A%, s5)) = {A%, 6} = 0. (38)

In a nonzerp field (F, 0, 0) there remains only one integral in addition to the
energy”

{A],H}=0. (39)

“For large fields, F — oo, this system, including viscosity, was investigated in [8].



