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Foreword

The Eleventh Annual Advanced Control Con-
ference sponsored by CONTROL ENGINEER-
ING Magazine and the Purdue Laboratory for
Applied Industrial Control was held at Purdue
University, September 30-October 2,1985. The
general objective of these conferences is to
further the art of control and instrumentation
systems engineering through a presentation of
a combination of basic tutorial lectures and a
number of short papers describing specific
applications of advanced control techniques.

Each year the conference has been limited to
a closely defined area in the broad subject of
advanced control. The first ten conferences
dealt with adaptive and nonlinear control
techniques, multivariable control systems,
hierarchical and distributed control, the con-
servation of energy in manufacturing proc-
esses through the application of industrial
control, on-line optimization techniques, man-
machine interfaces for industrial control,
computer software for industrial control, on-
line production scheduling and plant-wide
control, learning systems and pattern recogni-
tion (applying artificial intelligence to indus-
trial control) and areview of the 25 year history
of computer control systems with a forecast of
expected future developments.

This publication, “On-Line Process Simula-
tion Techniques in Industrial Control,” was
preprinted for distribution to attendees of the
Eleventh Annual Advanced Control Confer-
ence, and contains the complete text of all the
papers presented at the conference.

The editors acknowledge with gratitude the
major contributions of Mrs. Sharon K. Whit-
lock, Administrative Assistant for the Purdue
Laboratory for Applied Industrial Control and
Mr. Henry M. Morris, Technical Editor of
CONTROL ENGINEERING Magazine for the
arrangement of the Eleventh Annual Advanced
Control Conference and the production of this
volume of papers.

Dr. Theodore J. Williams
Director, Purdue Laboratory for
Applied Industrial Control

Mr. Edward J. Korﬁpass
Editor, Control Engineering
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RECURSIVE TECHNIQUES FOR IDENTIFYING DYNAMIC SYSTEMS

Lennart Ljung
Division of Automatic Control
Dept of Electrical Engineering
LinkSping University
S-581 83 Linkdping, Sweden

Abstract
Building models of systems on-line, while the data is
being recorded, is becoming an important and useful
tool for process control and process monitoring. Adap-
tive control and failure detection are typical applica-
tions. In this contribution we display the basic ideas,
algorithms and techniques for such recursive identifi-
cation. The emphasis is on kinship to off-line identi-
fication and on the role of a predictor function for

v okt 7
developing the algorithms. 3;4%2133

1 INTRODUCTION

System identification concerns the problem of building
mathematical models of dynamical systems based on in-
put-output measurements. Recursive or on-line techni-
ques for system identification perform this model buil-
ding in real time, and update the model continuously,
so as to provide information about current system pro-
perties. In this contribution we shall give a brief
state-of-the art account of the theory and the algo-
rithms for such recursive identification.

Systems and models

The notion of systems plays an important role in modern
science and technology. Many problems in various fields
are solved in a systems oriented framework. Subjects
like control theory, communication theory and opera-
tions research tell us how to determine suitable regu-
lators, filters, decision rules etc. Such theory
assumes that a model is available of the system in
question. The applicability of the theory is thus cri-
tically dependent on the availability of good models.

How does one construct good models of a given system?
This question about the interface between the real
world and the world of mathematics thus becomes cru-
cial. The general answer is that we have to study the
system experimentally and make some inference from the
observations. In practice there are two main routes.
One is to split up the system, figuratively speaking,
into subsystems, whose properties are well understood
from previous experience. This basically means that we
rely upon "laws of Nature™ and other well established
relationships, that have their roots in earlier empiri-
cal work. These subsystems are then joined together
mathematically, and a model of the whole system is
obtained. This route is known as modelling, and does
not necessarily involve any experimentation on the
actual system. When a model is required of a yet uncon-
structed system (such as a projected aircraft) this is
the only possible approach.

The other route is based on experimentation. Input and
output signals from the system are recorded and are
then subjected to data analysis in order to infer a
model of the system. This route is known as identifica-
tion. It is often advantageous to try to combine the
approaches of modelling and identification in order to
maximise the information obtained from identification
experiments and to make the data analysis as sensible
as possible.

The use of models

Models are required for many problems in process indus-
try and elsewhere. The design of a control system is
based on models of the system's behaviour. Signal pro-
cessing of raw data obtained from a collection of sen—
sors should be derived from a model of the relation-
ships between the measured signals. Predictions of
yield and product quality go back to models of the
production facility. Models thus form an indispensable
ingredient in many decisions related to the operation
of a process. It should be said though, that such mo-
dels need not be formalized in mathematical terms -
many decisions are no doubt based on "intuitive" or
"mental” models of the process behaviour.

On-line models

In many cases it is necessary, or useful, to have a
system model available on-line, while the system is in
operation. The need for such an on-line model construc-
tion typically arises since a model is required in
order to take some decision about the system. For exam-
ple, a control design based on a continuously updated
model is known as adaptive control, (See Astrom (1983)
for a recent survey) which is a promising approach to
handle time-varying plants.

Another important application is monitoring and failure
detection. In complex technological systems it has
become increasingly important to monitor the system's
behaviour by intelligent processing of measured sig-
nals. By studying models of the system's current pro-
perties it is possible to detect sudden changes due to
failures of various times, as well as continuous dete-
rioration due to wear etc.

The on-line computation of the model must also be done
in such a way, that the processing of the measurements
from one sample can, for sure, be completed during one
sampling interval. Otherwise the model-building cannot
keep up with the information flow.



Identification techniques that comply with this requi-
rement will here be called Recursive identification
methods, since the measured input-output data are pro-
cessed recursively (sequentially) as they become avai-
lable. Other commonly used terms for such techniques
are on-line or real-time identification, adaptive para-
meter estimation or sequential parameter estimation.

Paper outline

The present contribution aims at displaying basic prin-
ciples and techniques for recursive identification, as
well as quoting their basic analytical properties. The
presentation follows the framework of Ljung and Séder-
strom (1983). Basic features are that we stress the
close relationship of adaptive, recursive identifica-
tion to off-line identification methods, and that we
use the predictor function as a basic model concept.
Section 2 deals with the model concept, while off-line
identification is discussed in Section 3.The recursive
techniques are outlined in Section 4. Implementation
and practical issues are dealt with in Sections 5 and
6.

2 TIME-DOMAIN MODELS OF DYNAMICAL SYSTEMS

Time-domain Models of Dynamical Systems

Describing dynamical systems in the time domain allows
a considerable amount of freedom. Usually, differential
(partial or ordinary) equations are used to describe
the relationships between inputs and outputs. In dis-
crete-time (sampled-data systems) difference equations
are used instead. The question of how to describe pro-
perties of various disturbance signals also allows for
several different possibilities. Here, we shall list a
few typical choices, confining ourselves to the case of
linear, discrete time models. The basic notions carry
over to nonlinear models also, however.

The word "model” is sometimes used ambiguously. It may
mean a particular description (with numerical values)
of a given system. It may also refer to a description
with several coefficients or parameters that are not
fixed. In the latter case, it is more appropriate to
talk about a model set: a set of models that is obtai-
ned as the parameters range over a certain domain.

Linear difference equations. Let the relationship bet-
ween the input sequence {u(t)} and the output sequence
{y(t)} be described by

y(t)+aly(t-1)+....+any(t—n)=b1u(t—1)+....+bmu(tﬂm)
(2.1)

Here the coefficients a; and b, are adjustable parame-
ters. (A multivariable description would be quite ana-
logous, with a, and bi as matrices.) We shall generally
denote the adjustable parameters by a vector O:
T

© = (aj...a, by...by)". (2.2)
If we introduce the vector of lagged inputs and out-
puts

o(t)=(y(t-1)...-y(t-n)u(t-1)...u(t-m)) T, (2.3)

then equation (1) can be rewritten in the more compact
form

y(t) = 0T ()0 (2.4)

In (2.1) or (2.4), the relationship between inputs and
outputs is assumed to be exact. This may not be realis-
tic in a number of cases. Then we may add a term v(t)
to (2.1) or (2.4):
y(£) = 0T (10 + v(t) (2.5)
that accounts for various noilse sources and disturban-
ces that affect the system, as well as for model inac-
curacies. This term can be further modelled, typically
by describing it as a stochastic process with certain
properties. The simplest model of that kind is to
assume {v(t)} to be white noise, i.e. a sequence of
independent random variables with zero mean values.
However, many other possibilities exist. Among the most
common models is the following one.

ARMAX models. If the term {v(t)} in (2.5) is described
as a moving average (MA) of white noise {e(t)} we have
a model

y(t)+aly(t—1)+...+any(t—n)=b1u(t—1)+...+
+bmu(t—m)+e(t)+c1e(t—1)+...+cne(t—n) (2.6)
Such a model is known as an ARMAX model.

Output error models. Instead of adding the disturbance

v(t) to the equation as in (2.5), it can be added as an
output measurement error:

y(t) = x(t) + v(t) (2.7a)
x(t)+f1x(t—1)+...+fnx(t—n)=b1u(t-1)+...+bmu(t1m)
(2.7b)

Such models are often called output error models. The
"noise-free output” x(t) is here not available for
measurement, but given (2.7b) it can be reconstructed
from the input. We denote by x(t,0) the noise free out-
put that is constructed using the model parameters

0 = (fye+efy by +nuby)T, (2.8)

i.e.

x(t,@)+f1x(t—1,0)+...+fnx(t-n,6)=b1u(t-1)+...+bmu(t-m).

With
©(t,0)=(-x(t-1,0)...-x(t-n,0)u(t-1)...u(t-m)) T, (2.9)
(2.7) can be rewritten as

y(t) = 0%o(t,0) + v(r) (2.10)

Notice the formal similarity to (2.5) but the important
computational difference! Also in output error models
the character of the additive noise v(t) can be further
modelled.

State-space models. A common way of describing stochas-
tic, dynamical systems is to use state-space models.
Then the relationship between input and output is de-
scribed by

x(t+l) = F(O)x(t) + G(B)u(t) + w(t)
(2.11)
y(t) = H(O)x(t) + e(t),

where the noise sequences w and e are assumed to be
independent at different time instants and have certain



covariance matrices. Unknown, adjustable parameters 6.
may enter the matrix elements in F, G and H in an arbi-
trary manner. These may, e.g., correspond to canonical
parametrizations (canonical forms) or to physical para-
meters in a time-continuous state space description

that has been sampled to yield (2.11).
MrJJjL
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With the shift operator q, qu(t)=u(t+l) a general 1i-
near model can be written

A general linear model

y(t) = G(q,0)u(t) + H(q,0)e(t) (2.12)
where
- gl Sk
G(q,9) "N g(k,0)q
2 -k
= £ h(k,9
H(q,0) =1 + . (k,0)q

and {e(t)} is assumed white noise.

Models and Predictors

The 1list of potential models and model sets can be made
long. For our purposes it is useful to extract the
basic features of a models, so as to allow for a treat-
ment of model sets in general. First we introduce the

following notation:

M(O): a particular model, corresponding to the para-
meter value O
M: a set of models: d
M={m(0)|oeny < rY}
zt: the set of measured input—-output data up to
time t:

z8={u(1),y(1),u(2),y(2)....u(t),y(t)]

%
Similarl‘y, ub and yt denote the input sequence and the
output sequence, respectively, up to time t.

The various models that can be used for dynamical sys-
tems all represent different ways of thinking and re-
presenting relationships between measured signals. They
have one feature in common, though. They all provide a
rule for computing the next output or a prediction (or
"guess”) of the next output, given previous observgi
tions. This rule is, at time t, a function from zt to
the space where y(t) takes its values (RP in general).
It will also be parametrized in terms of the model
parameter O. We shall use the notation

y(t|o) = gyeost,257 Ly (2.13)

for this mapping. The actual form of (2.13) will of
course depend on the underlying model. For the linear
difference equation (2.1)=(2.4) we will have

y(efo) = 0To(e) (2.14)

The same prediction or guess of the output y(t) will be
used for the model (2.5) with disturbances, in case
{v(t)} is considered as "unpredictable"” (like white
noise). For the state space model (2.11) the predictor
function is given by the Kalman filter. Then gy is a
linear function of past data.

For the ARMAX-model (2.6) a natural predictor is compu-
ted as

;(t|e)+cl;(:-1|e)+...+cn;(t—n|e) -

= (cl—al)y(t-1)+...+(cn—an)y(t-n)+b1u(t—1) +

oo o otb_u(t-m) (2.15)

Notice that this can be rewritten as

;(cio) = 0Tp(t,0) (2.16a)

By ¢ m By, Byes ol pw o g § (2.16b)

®(t,0) =

(=y(t=1). . .=y(t-n)u(t-1)...u(t-m)e (t-1,0)...c (t-n,0)) T
(2.16c)

e(t,0) = y(r) - ;(tl@)- (2.16d)

For the model (2.7)=(2.11) a natural predictor is also
given by (2.16a) with © and ¢(t,0) defined by (2.8)-
(2.10) Notice that in this case the prediction is
formed from past inputs only. We then have, formally

t-l).

y(e|o) = gy(ost,u (2.17)

Such a model we call an "output error model” or a "si-
mulation model”. —
Similarly the model (2.12) gives the predictor
y(t|e)=H"1(4,0)6(q,0)u(t)+(1-1"1(q,0)) y(t) (2.18)
Notice that the function 84(©;5t,*) in (2.13) is a de-
terministic function from the observations z'™' to the

predicted output. All stochastic assumptions involved
in the model descriptions (e.g. white noises, covarian-
ces matrices, Gaussianness) have only served as vehic-
les or "alibis” to arrive at the predictor function. i~
Nonlinear models also fit into the formulation (2.13).
Then g simply is a nonlinear function of Zt—l.

The prediction y(t‘@) is computed from Zt_1 at time
t-1. At time t the output y(t) is received. We can then
evaluate how good the prediction was by computing
e(t,0) = y(t) - y(tfo). (2.19)
We shall call €(t,0) the prediction error at time t,
corresponding to model M(G). This term will be the
generic name for general model sets. Depending on the
character of the particular model set, other names
like, e.g. the (generalized) equation error may be
used. For a simulation model (2.17) it is customary to
call the corresponding prediction error (2.19) the

output error.

3 OFF-LINE PREDICTION ERROR IDENTIFICATION METHODS

We shall now discuss how to select particular members
in the model structure that describe observed input-
output data as well as possible. Let the data up to
time N be denoted by Z

What we seek is thus a mapping from ZN to O€Dythat
selects the "best" 0(Z )=DN. We shall discuss three
basic such mappings, corresponding to different identi-
fication methods.

p ‘LV/J’:’_{P
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Given the general predictor model (2.13), or in the
case of (2.12), (2.18), it is natural to evaluate the

prediction error or

e(t,0)=y(t)-y(t[0)=H"1(q,0)(y(£)-C(q,0)u(t))  (3.1)
We shall des§ribe the following general methods for
determining Oy:

(3.2)

6 = arg min 1 g ez(t Q)
N oGy N ’

M t=1

Here "arg min" denotes the minimizing argument.

The method (3.2) is a very natural approach to the
identification problem: to select that member in the
model set that gives the smallest prediction error when
applied to the data record. We could of course also
have used a more general norm than the quadratic one

8 = arg min L g l(e(t @)) (3.3)
N o  Niea

but we shall in this treatment confine ourselves to
(3.2).

When applied to linear regression models (2.14) we
have

8.~ tal T (y(ry=oT(t)0)2=
N= argem oy t=1(y -

1

N i
- g Lle@eto])™? (3.4)

N
L e(t)y(t)
t=1

yielding the celebrated least squares method. It is
also well known how the method (3.3) contains the maxi-
mum likelihood method with the choice

2(*)=-1log £ (*) (3.5)
where f_(*) is the probability density function for the
innovat?ons. See Ljung (1978) or Astréom (1980) for a
further discussion on prediction error methods. An ear-
ly reference is Astrém and Bohlin (1965). The least
squares method is treated in detail in e.g., Astrém and
Eykhoff (1971) and Hsia (1977).

Numerical techniques

Let us denote

.
vy©@,2M= % £ e?(t,0) (3.6)

t=1

To find O we use a numerical algorithm to minimize V-

Except inNthe case (3.4), where Vy is quadratic in 0,
the minimization has to be performed by iterative tech-
niques. With "i" as the iteration number, we proceed as
follows.

5:«(”’5»:(1_1)'“»:(“[%”)]'1"1'«(51«“'1)'ZN) (3.7
Here Vﬁ is the gradient of the criterion,

vjo,2M=- % tgl $(t,0)e(t,0) (3.8)
where ¢ is defined as

¥(,0)= &5 y(t|0) (3.9)

RN is a matrix that possibly modifies the search direc-
tion from the gradient one. Typical choices are:

Ry(D=1 or ry(Da ]vg(aN(i'l),zN|2-1 (3.10)

(gradient or steepest descent, un-normalized and norma-
lized)

N PN ~
i 1 - -
RN( V- N { ¢(t,GN(1 1))¢T(t,@N(i 1)) (Gauss-Newton)
(3.11)
The scalar y is chosen so as to guarantee a decrease in
the criterion value. See Dennis and Schnabel (1983), Ch

10, for a readable and authoritative discussion of
nonlinear least squares techniques for (3.6).

Gradients of the prediction

For specific model sets the iterative scheme (3.10),
(3.15) needs only be complemented with expressions for
computation of §(t|0) and ¢(t,0) for any given value of
O. We shall develop such expressions now.

First consider the a linear regresssion (2.14). Clear-
ly, we have
$(t,0)=0(t) (3.12)
and it is easy to verify that with p=1, (3.7), (3.11)
gives the solytion (3.4) after just one iteration re-
gardless of Oy in this case.

Next, consider a first order ARMAX model (compare (2.6)
and (2.15)):

e(t,0)+c e(t-1,0)=y(t)+a y(t-1)-b u(t-1) (3.13)
4 e(t,0)
$(£,0)= 4 y(t[0)= - $5 e(c,0)=| §5 ect,0) | (3.14)

4 et,0)

By straightforward differentiation of (3.13) we obtain
35 e(t,004e 3 e(t-1,0)=y(t-1)

e(t,0)+c 95 e(t-1,0)=u(t-1)

&% &

- €(t,0)+c §= e(t-1,0)+e(t-1,0)=0

or, with the notation ¢(t,0) defined by (2.16)

$(t,0)+ed(t-1,0)=p(t,0) (3.15)

It is easy to see that this extends to general ARMAX
models as

1
C(q)

¢$(t,0)= @(t,0) (3.16)

Similarly the output error model, (2.7) - (2.10) gives

$(t,0) = L
F(q)

¢(t,0) (3.17)

with ¢(t,0) defined by (2.9).



Asymptotic Properties

The asymptotic distribution for the estimates defined
by (3.2) can be determined under quite general condi-
tions, and correspond to classical results for the
maximum likelihood estimates for the case of indepen-
dent observations. See, e.g. Ljung (1978) and Ljung and
Caines (1979) for results corresponding to the frame-
work used here. The techniques are based on nonstandard
versions of the law of large numbers and the central
limit theorem, and are somewhat algebraically involved
due to the general model structure. The result is that,
under weak regularity conditions we have

SN»G* = arg min V(0) w.p.l as M= (3.18a)

V(0)=1im EV\(0,zN) (3.18b)
N>

/N(0y—0*)€ AsN(0,P) (3.19a)

pP=Q~lu q7! (3.19b)
2

Q = 357 V(O)|e=e* (3.19¢)

He lim N - E {[vyox,z) ] Tvycox,zM) (3.19d)

Here prime denotes differentiation w.r.t. © and (3.19a)
means that the random variable on the left converges in

distribution to the normal distribution with zero mean
and covariance matrix P.

Notice that (3.18)-(3.19) hold even if a true descrip-
tion of the system is not available in the model set.
If this indeed is the case so that there exists a
(unique) 90 in Dy such that e(t,00)=e(t) is white noise
with variance A, then

o*=0,
and
P=A[E¢(£,00)07(£,00)] 7} (3.20)

When the general criterion (3.3) is used, (3.20) takes
the form

1

P= « ([ Ep(t,00)0T(¢,00)]” (3.21a)
T 2
k(L) = EL&_LQLLLLLZ (3.21b)
[E2"(e(t))]

See, e.g. Ljung and Séderstrém (1983).

Often our prime interest is in the transfer functions
of the model (2.12)

Gn(a)=G(q,0y)
N - (3.22)
HN(Q)=H(q ’ON)

rather than in the parameter © itself. Suppose that the
true system can be described by
y(t)=Go(q)u(t)Hig(q)e(t) (3.23)
with E e2(t)=A

Then, there is a simple expression for the variance of
(3.22), that is asymptotic in the model order n. We

assume that the model structure (2.12) is employed with
a black-box parametrization of order n: Then

-1

oy(e™®) B (0)  Bye(w)

(3.24)

Cov ~ § o,

Hy (1) Tou@) A

for large N and n. Here @v(w) is the noise spectrum
i iwy]2
o, (w)=A|Hy(e1?)]?,

while @u(w) is the input spectrum and @u (w) is the
cross spectrum between input u and innovations e. See
Ljung (1985) for a derivation and discussion of these
results.

4 RECURSIVE PARAMETER ESTIMATION TECHNIQUES

By a recursive estimation method we shall mean an algo-
rithm that updates O in order to take new information
into account, using a finite, fixed amount of calcula-
tions and memory locations. Conceptually, we may

write
S(t)=F(t,8(t-1),y(t),u(t)) (4.1a)
8(t)=ﬂ(3(t)) (4.1b)

Here, S(t) is a finite and fixed dimensional auxiliary
vector ("an information state”), that condenses the
information contained in the increasing data record zt.
Usually, as we shall see, the algorithm will take more
specific forms than (4.1).

Now, several different approaches to the construction
of such recursive algorithms can be taken. Some common
ones are

o The Bayesian approach: The model parameter O is
considered to be a random vector, which of course
is correlated with the data process zt. Approxima-
tions of the a posteriori probability density for ©
can then be computed, and ©(t) can be taken as
e.g., the mean of this posterior distribution.

o The stochastic approximation approach: A measure of
fit between the data and the model is chosen, e.g.,
the variance of the difference of true output and
model output. This criterion can then be minimized
using ideas from stochastic approximation, like the
Robbins and Monro (1951) algorithm.

o Observers, Model-reference techniques, Pseudolinear
regressions: The model error can be correlated with
part of the data in order to make it as small as
possible.

In this contribution, though, we shall concentrate on a
fourth approach, viz to derive recursive algorithms
from off-line identification ideas.

Recursive prediction error algorithms

Let us start by trying to cast the prediction error
methods of Section 3 into a recursive form. To prepare
for time-varying systems, we shall consider a weighted
sum instead of (3.2):

vV (0,28)= I B(t,k)e2(k,0) (4.2)
t i) k‘l ’ ’



The weighting profile {B(t,k)} is selected so that
adequate weight is assigned to the different prediction
errors. If, for example, the system is time varying, it
is reasonable to pay less attention to old data, i.e.
to let B(t,k) be an increasing function of k. We shall
work with the following structure for B(t,k):

Let A(J) 0=1,...,t be a given sequence of scalars and
define

=[2 I apt (4.3)
X k=1 j=k+1 ] '
and
B(t,k)=y(t). f A(3); B(t,t)=y(t) (4.4)

j=k+1

Notice that a constant A(j)=A gives an exponential
forgetting profile

Bt k)= 1o . Atk (4.5)

and that, by construction
E B(t,k) 1

t =
k=1 ’

For the gradient of Vt(O,Zt) we have

V0,28 = = T B(t,I06(,0)¢ (k,0) =
k=1
' -1
=[x ;?{{fg-vt_l(e,zt ) = Y(E)6(t,0)e(t,0)] =
=V£_1(O,Zt—1)+1(t)[—¢(t,0)e(t,G)—VE_l(O,Zt_l)] (4.6)

For the prediction error approach we developed the
general search algorithm (3.7):

¢ NEES 1 1)9-1,,(a(1-1) ,t
oft) = o{t™D) _ D[R] Lyi (-1 ) 4.7)
Here the subscript "t" denotes that the estimate is

based on t data, i.e. zZ%t. The superscript "(i)" denotes
the i:th iteration of the minimization procedure.

Suppose now that for each iteration i, we also collect
one more data point. This would give an algorithm

of) = o{fTD) - LIO[R(D Ly (ot D ) (4.8)
For easier notation, we introduce
o(e) = oft), R(t) = R{Y) (4.9)

We now make the (bold) approximation that 0 (t-1)
actually minimized vt_l(e,zt), so that

Vi (6(e-1),2571) = o. (4.10)
Then, we have, from (4.6)
vi(e(e-1y,2z%) = =y (£)¢(t,0(t-1))e(t,0(t-1)) (4.11)

With this approximation (and taking p(t)=1) we thus
arrive at the algorithm

()= (t-1ty (ORL(00(£,6(e-1))e(£,0(t-1))  (4.12)

The choice of R(t) could be a gradient scheme (cf
(3.10))

R(E) = 1 (4.13)
or a normalized gradient

R(t) = |¢(t.5(t—1))|2 .1 (4.14a)
or

R(t) = kél s<t.k)l¢(k,8<k—1>)]2 .1 (4.14b)

It could also be a Gauss-Newton version (see (3.11))
t -~ ~
R(O=I B(t, k) (k,0(k-1))¢T(k,0(k-1))

which analogously to (4.6) can be written

R(:)=R(c-1)+y(c)[¢(:,8(:—1))¢T(:,o(:—1))-R(c—1)](4 15y

Now, is the algorithm (4.12) a recursive one? To answer
this question we consider first the linear regression
case

y(t]o) = oT(eyo.

Then ¢(t)=p(t) and (4.12), (4.15) is indeed the well-
known recursive least squares algorithm (RLS).

8(t)=5(t-1)+7(t)R-1(t)£(t) (4.16a)
e(t)=y(t)~oT(£)0(t-1) (4.16b)
R(t)=R(t-1)+r () [0 ()0 T(t)-R(t-1)] (4.16¢)

For some numerical aspects on the implementation of
(4.16), see the next section.

Now, normally, it is not the case that (4.12) is recur-
sive. Let us consider the following case.

Example 4.1 Consider the first order ARMAX model

y(t) + ay(t-1) = bu(t-1) e(t) + ce(t-1) (4.17)

Here OT=(a b c). The prediction y(tl@) is computed
according to

;(tl@) +c ;(c-1|e) = (c-a)y(t-1)+bu(t-1) (4.18)
The gradient ¢(t,0) is determined by (3.19)
-y(t-1)
$(t,0) + ¢ ¢(t-1,0) =| wu(t-1) (4.19)
e(t-1,0)
where, as usual,
e(t,0) = y(t) - y(t{o). (4.20)

We see from (4.18) that for any given 0, y(tl@) is the
output of a linear filter with input y(k), u(k), k<t-1.
This filter has an infinite impulse response (the im-
pulse response is h(k)=(c—a)é—c ). Therefore, in order
to compute ;(t‘@(t—l)) and & t,G(t—l)) which we Teed in
(4.12), we have to use the whole data record yt~ . An
algorithm that uses s((t,e(t-l)) can thus not be recur-
sive.



We therefore need an approximation of s(t,e(t—l)] that
can be computed recursively. A natural idea is to use
(4.18) with the current estimate all the tiae, that is,
1f we let §(t) denote the approximation of y(tle(t—l))
y(t)+e(t-1)y(t-1)=[ c(t-1)-a(t-1) ]y(t-1)+b(t-1)u(t-1)
(4.21)

With the same argument we can use ¢(t) as an approxima-
tion of ¢(t,0(t—l)), where ¢ (t) is given by

-y(t-1)
$(t) + c(t-1)¢(t-1) = u(t-1) (4.22a)
E(t-1)
Here we let the residual €(t) be defined by
E(c)+2(c)E(c—l)=y(:)+;(c)y(:—1)—§(t)u(t) (4.22b)

It differs from y(t)-y(t) since we have used the upda-
ted estimates O(t) (rather than 8(t-1)) for the compu-
tation.

Using these approximation in (4.12) now gives the algo-

rithm:
/

a(t) a(t-1)

b(e) | =| bee-1) | + y@)R ety cerece) (4.23a)
\z(c) :(t-l)

together with (4.21), (4.22) and

s(t)=y(t)-;(t) (4.23b)
R(E)=R(t=1)+y ()[4 ()4 T (£)-R(t-1)] (4.23¢)

The example showed how to modify the algorithm (4.12)
so as to make it a recursive one. The general principle
of how to construct the approximation € (t) and ¢(t) can
be described in words as follows:

"In the time recursions defining ¢ (t,0)
and €(t,0) from z% for any given O,
replace, at time k, the parameter O by
the currently available estimate O (k).
Denote the resulting approximation of
¢(t,0(t-1)) and e(t,8(t-1)) by ¢(t) and
e(t).”

This gives as the family of recursive prediction error
methods (RPEM):

(4.24)

8(t)=g(t‘1)+‘Y(t)R—1(t)¢(t)€(t) (4.25a)
e(t)=y(t)-;(t) (4.25b)
¢ is the gradient of prediction w.r.t.

9. R(t) is a positive semidefinite

matrix, e.g.

R(t)=R(t-1)+y () [0 (£)eT()-R(t-1)]

(Gauss-Newton) (4.25¢)
or

2
=R(t-1 I-R(t-1)
R(t)=R(t-1)+y (t)[ |4 () | “T-R(t-1)] s.250)

(Normalized gradient)

It should be noted that the predictor filters, corres-
ponding to (4.21) and (4.22) should be stable. It is
therefore necessary to include a test whether o(t)
corresponds to a stable predictor. If not, O(t) will
have to be projected into the stability region.

Asymptotic properties

The properties of the general algorithm (4.25) are
analysed in Chapter 4 of Ljung and Séderstrém (1983).
The results can be summarized as follows (subject to
some regularity conditions).

. Assume that lim tey(t)=c
tro

. R(t)ZﬁI all t
Then
0(t)>0* w.p. 1 as trx (4.26)

where O* is a local minimum of V(O) defined by
(3.18).

Furthermore, if

. lim tey(t)=1
tro

. R(t) is the Gauss—-Newton choice

. O*#@O is a unique true value (e(t,@o) is white
noise) then

/t(0(t)-04)€ AsN(O,P) (4.27)

where P is given by (3.20)

The result thus is that the asymptotic properties of
the recursively computed estimate coincide with those
of the corresponding off-line estimate.

5 IMPLEMENTATION ASPECTS

Consider the basic algorithms (4.25). In actual imple-
mentations one would of course not construct the matrix
R(t) at each sample and then invert it. There are seve-
ral ways of handling this problem. One is to define

-1
Y(OR “(t)=P(t) (5.1)
and apply the matrix inversion lemma to (4.25¢). This
gives

T
P(t)=[P(t~l)— P(t-1)¢ () " (t)P(t-1) /A (t 5.2
AR T(E)P(E=1) (t) 1t} i
where A(t) is given by (4.3)-(4.4).
We could also define
L(£) =P ()¢ (t)= — =LA (L) (5.3)

A(E)HT(£)P(E-1)4 (L)

To achieve better numerical properties, it is often
advisable to factorize P(t) and update its factors
separately. Bierman's (1977) algorithm employs a UDU-
factorization. See this reference or Chapter 6 of Ljung
and Séderstréom (1983) for details. Here we shall give
some details of a related algorithm, which is directly
based on Householder transformations. It was given by
Morf and Kailath (1975).



Let P(t) in (5.1) be factorized as

P(t) = Q(t)QT(t) (5.4)

which, for triangular Q is the Cholesky decomposition.

Step 1. At time t-1, let Q(t-1) be a lower triangular
square root of P(t-1) as in (5.3). Let p(t) be /A(t).

Form the (1+d)x(1+d)(d=dimO) matrix

p(t) 0
S(t-1) = (5.5)
QT(e-1e(r)  QT(e-1)
Step 2. Apply an orthogonal (1+d)x(l+d) transforma-
tion
T (7T = 1)

to S(t-1) so that T S(t-1) becomes an upper triangular
matrix. T can, e.g. be found by Householder transforma-

tions. Let II(t), L(t) and Q(t) be the 1x1 dx1 and dxd
matrices defined by
~T
In(t) L (t)
T S(t-1) = ( (5.6)
0 ql(e)

(Clearly Q is lower triangular).

Step 3. Now with L(t) and P(t) as in (5.2)-(5.3), we

have

L(t) = T(t) I(t)

P(t) = QUOT (/A (L) (5.7)
m(e)IT (e)=n (o) T(e)P(e-1)¢ (t)

Hence

Q(t) = Q) Kty (5.8)

Verification:

Multiplying (5.6) with its transpose gives

m(t) 0 n(e) TT(e)
L(t) [[¢3) 0 Ty |
(n(e))? m(e)LT(e)
) T(eHn(e) AT ()L (e) )

= sTe-1)1Tr s(e-1) = sT(e-1)s(e-1) =

(b)) 2T(e)ae-1QT(e-1)6(t)  ¢T(e)qee-1)T(e-1)

Q(e-1)QT (e-1)¢ () Q(e-1)QT(e-1)

Using the facts that Q(t-1)QT(t-1)=P(t-1) and

Be(t)=A(t) it is now immediate to verify the equalities
in (5.7) by a comparison with (5.2)-(5.3)

There are several advantages with this particular way
of performing (5.2)-(5.3). First, the only essential
computations to perform is the triangularization step

(or "Q-R factorization") (5.6), for which several good
numerical procedures exist. This step both gives the
new Q and the gain L after simple additional calcula-
tions. Second, in the update (5.6) we only deal with
square roots of P. Hence the conditioning number of the
matrix S(t-1) is much better than that of P. Third,
with the triangular square root Q(t) it is easy to
introduce regularization, i.e. measures to ensure that
the eigenvalues of P stay bounded, at the same time as
P remains positive definite.

Ljung and Ljung (1985) contains some further investiga-
tions of the numerical properties of least-squares type
algorithms.
yIRG|

6 COPING WITH TIME-VARYING SYSTEMS

it
The gain or "step-size" y(t) in the algorithms of Sec-
tion 4 determines how much influence the last measure—
ment will have on the estimate. Clearly, the choice of
this y(t) reflects the "relative information contents”
of that measurement. For a time-invariant system this
will simply be inversely proportional to the number of
previous measurements, which suggests that y(t) decays
like y(t)~1/t. Comparing with (4.3)-(4.4) we see that
this corresponds to A(j)=1 and B(t,k)=1/t, which makes
sense. The asymptotic results quoted in Section 4 also
referred to this case.

For a time-varying system, y(t) will determine the
trade-off between noise-sensitivity and tracking abili-
ty of the algorithm. This trade-off may not be so casy
to reach, and should probably in many cases be adap-i-
ve, reflecting nonstationary properties in the system's
behaviour. We shall discuss two approaches to deal with
this problem.

Choice of forgetting factors A(t)

The choice of forgetting profile B (t,k) is conceptually
simple: Select it so that the criterion essentially
contains those measurements that are relevant for the
current properties of the system. For a system that
changes gradually and in a “stationary manner”, the
most common choice is to take a constant forgetting
factor:

=tk =
B(t,k) = A i.e. A(t) = A (6.1)
The constant A is always chosen slightly less than 1,
so that

B(t,k) = e(tmk)logh | —(t-K)(1-n)_ (6.2)

This means that measurements that are older than
TO=1/(1~X) samplgi are included in the criterion with a
weight that is e "=36% less than that of the most re-
cent measurement. We could call
Ty = 1/(1-\) (6.3)
the memory time constant of the criterion. If the sys-
tem remains approximately constant over Ty samples, a
suitable choice of A can then be made from (6.3). Since
the sampling interval typically reflects the natural
time constants of the system dynamics, we could thus
select A so that 1/(1-A) reflects the ratio between the
time constants of variations in the dynamics and those
of the dynamics itself. Typical choices of A are in the
range between 0.98 and 0.995.




For a system that undergoes abrupt and sudden changes,
rather than steady and slow ones, an adaptive choice of
A\ could be conceived. When an abrupt system change has
been detected, it is suitable to decrease A(t) to a
small value for one sample, thereby "cutting off"” past
measurements from the criterion, and then increase it
to a value (close to) 1 again. Such adaptive choices of
A\ are discussed, e.g. in Fortesque et al (1981) and
Hagglund (1984).

Including a model of parameter changes

For a linear regression model with time varying parame-
ters, we could postulate a formal model:

O(t)=0(t-1)+w(t) {(6.4a)
y(£)=oT(£)0(t)+e(t) (6.4b)
Here {w(t)} and {e(t)} are assumed to be white noises
with variances Rl(t) and R,(t), respectively. Applying
the Kalman filter to (6.4) gives the algorithm

8(t) = 8(t-1) + L(t)e(t)

]

e(t) = y(tr) - y(t) (6.5)

L(t)

P(t-1)o(£)[Ry(£)+oT(£)P(e-1)0 ()]}

P(t-1)o(t)o T(t)P(t-1))

P(t)=P(t-1)- [Rzﬂ,T(t)p(t-l)w(i:)]—1

R ()

when {e(t)} and {w(t)} are Gaussian noises.

In this case, this algorithm does give the optimal
trade-off between tracking ability and noise sensitivi-
tv. in terms of minimal a posteriori parameter error
covariance matrix (This follows from the original deri-
vation of the Kalman filter, Kalman and Bucy (1961), as
pointed out in Bohlin (1970) and Astrém and Wittenmark
(1971)).

The same idea can of course be applied to the other
model structures in Section 2, even if (6.5) is entire-
ly ad hoc for structures other than the linear regres-
sion. The advantage with (6.5) is that the matrix Rl(t)
describes (the variance of) expected parameter changes.
It could thus be a very useful alternative, in particu-
lar if we have some insight into how the parameters
might vary, e.g. if certain parameters vary more rapid-
ly than others.

The case where the parameters are subject variatioms,
that themselves are of a nonstationary nature (i.e.
Rl(t) in (6.4) varies substantially with t) can be
dealt with a parallel algorithm structure, as described
in Andersson (1985). A related technique for systems
whose parameters change as a Markov Chain is given by
Millnert (1982).

7 CONCLUSIONS

We have discussed basic techniques for recursive para-
meter estimation in a general parametrizations of dyna-
mical systems. We have seen that the off-line identifi-
cation problem offers a good insight into basic ideas
and techniques for adaptation algorithms.

A fairly complete asymptotic theory can be given for
the case where the gain tends to zero. This corresponds
to a constant, time invariant system. It is reasonable
to assume that similar properties will hold also when

the true system is slowly time varying and a small,
constant gain y(t)Zy>0 is used. It would be interes-—
ting, though, to develop a more complete theory for how
to deal with time-varying systems, with a nonstationary
behaviour.
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SUMMARY

paper is intended to survey identification-
It begins with a
Some

This
based methods of tuning controllers.
discussion of some of the issues and tradeoffs.
description of performance measures, plant and
controller structures follows. Various methods of
tuning parameter calculations, given & process model,
are then reviewed. This is followed by a discussion
of a few identification methods, including those where
oscillations are elicited to identify a small number
of parameters. A particular technique using Laguerre
functions 1is described and examples of its use in a
pulp mill are given. Finally, adaptive control is
discussed, with some applications.

1. INTRODUCTION

engineer, tuning
The tuning process

For process control
controllers is a fact of life.
consists of selecting a (small) number of controller
parameter values in order to improve (or optimize)
performance. In process control, dynamic models are
usually crude; rough estimates of gain, major time
constants and delay are often the only available data.
This may be enough to choose a controller structure,
but good performance can only be obtained by
adjusting the controller parameters. This 1is in
contrast to the situation which prevails in aerospace
systems. There, considerable effort is spent in
testing and modeling, because after-the-fact tuning is
often out of the question.

Whether, and how often, a controller needs tuning
with

a

depends on the sensitivity of the performance
respect to the plant variations and on the extent of
those plant variations. Figure 1 shows two plots of

"performance" (by some measure) vs "plant" (assumed to
take on values between a and b). The nominal plant is
represented by n, and the controller is assumed to
optimize performance for that plant. The two curves
correspond to two different measures of performance:

it is clear that (1) will likely call for tuning, and
that (2) may not require it. Curve (1) corresponds to
the case where high performance is the objective: for
example, the performance measure could be the rise
time of the step response, with a heavy penalty term
for overshoot. On the other hand, curve (2)
corresponds to the case where performance goals are
relatively modest, but relatively insensitive; for

example, the performance measure could be the steady-
state error to a step input (which would be zero with
internal control for all plants leading to a stable

11

"tight" control needs
control. This
least with

(pulp and

closed loop). In other words,
more frequent attention than "loose"
may explain why in the one industry at
which the author is the most familiar
paper), most loops are loosely tuned.
Much, if not most, tuning
industries 1is done by trial and error.
this is on-line parameter optimization.
practical if the performance measure is a
flat function of the controller parameters. Such
measures are usually also relatively insensitive to
plant variations, as in (2) of Figure 1. On the other
hand, relatively stringent requirements will normally
lead to a sharper optimum of the performance measure
with respect to the controller parameters. To come
near the minimum will (i) require many trials and (ii)
require that each trial yield an accurate
determination of the performance measure. The first
is onerous if the process time constant is 1long; the
second requires that test signals be large enough to
raise the response above the noise level. It is not
surprising to find that loops with long time constants

in the process

Basically,
This is quite
relatively

are often loosely tuned, given the reluctance to
interfere with normal production for long time
periods. It is theoretically possible to have a
parameter adjustment scheme which depends directly on

measured performance. Some such schemes, e.g. based
on stochastic approximation, have been proposed in the

literature, but there seems to have been few, if any,
applications. Other schemes combining stochastic
approximation with partial identification have had

more success.

In model-based tuning, one starts with a model
structure, with variable parameters. Given the
model parameter values, the controller parameters are
determined by some algorithm (possibly optimization).
The model parameters may depend in some known manner

on process conditions; for example, the delay in a
paper machine between thick stock flow and basis
weight is inversely proportional to machine speed.
Alternately, the model parameters may be estimated by

an identification scheme.

The paper is organized as follows: Preliminary
considerations, such as: performance measures,
controller structures and plant structures are
discussed. Next, several methods for the calculation
of controller settings, given the plant model, are
described. Both the continuous-time and discrete-time
cases are given. Some identification techniques

relevant in this context are presented, including both
open- and closed-loop experiments. The following
section offers practical examples of off-line

identification followed by tuning. Adaptive control,



and direct, 1is the subject of the next

The final section presents conclusions.

indirect
section.

2.PRELIMINARIES
2.1 Performance Measures
T TAs was pointed out in the Introduction, the need
for tuning is determined in large part by the
definition of a performance measure. Performance
specifications are normally expressed as a set of
constraints in the time domain, the frequency domain
or both. For analytical and computational
convenience, a single number 1is often used as
performance measure, in the hope that minimization of
that number, or performance index, will 1lead to
satisfaction of the performance specifications.
The integral-squared error (ISE) is easily
convenient index from an analytical point
It is expressed as

the

most of

view.

(1

IsE = f "e?(v) ar = 25 "[E (£) |%af

where e(t) 1is the error response to a given test
input, usually a step.

Time or frequency weights can be inserted
control the behavior of the optimal response.

example, the integral-time-squared error (ITSE), or

to
For

ITSE = (2)

@ 2
fo te “(t)dt
large errors in the initial portion of the
but 1less as time grows. Integral penalty
terms may be added to the error term in order to avoid
excessive control action; the integral of the square
of the control is most often used.

In the stochastic case, the error variance is
almost universally used, often with the control
variance as a penalty term. In contradistinction to
the deterministic case, where the value of the
integral squared has no direct interpretation, the
variance does have meaning if the distribution is
known. For example, in the Gaussian case, the error
variance is related to the probability of the error
being within certain bounds.

The variance of the error is related to the ISE
criterion for the deterministic case. With reference
to Figure 2, let e (s) /yd(s) = T(s) Then,
e(s)/w(s) = =T(s). By Parseval's theorenm,
the integral-squared error for a deterministic input
Y4 (s) is:

tolerates
response,

joo
1 [/ e(s)e(-s)ds
2§ —joo

ISE

Jw
L S T(s)T(-8)y,(s) y, (-s)ds

2m§ —joo (3)

For a stationary random disturbance process w(.), the
error variance is:

.00
73 T(s)T(-8)9  (s)ds
21§ -3% ww
where ¢ is the transform of the autocorrelation
function of w(+), i.e. its power density spectrum.

var - 1

(4)

If y4(t) is chosen such that y,(s)y,(-s) = ¢ (s)
then the® ISE for the input yq 1is the same as " the
variance for the process w(°*); minimizing the one is
also minimizing the other. For example, y, (s) =1
(unit impulse) corresponds to ¢ .. = dj (white
noise); 1y4(s)= 1/s (unit step) corresponds to

% ww = - T2(Wiener process). In general, then, an
appropriate deterministic input can be used to
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systemn,
of the

stochastic performance of the
knowledge of the spectrum

optimize the
given some
disturbance.

2.2 Plant Models
T "The plant models used in this paper are all
linear and time-invariant. The reason for this is
that the problem under consideration is regulation at
a given steady state operating point. Linearity is a
result of assuming small variations about the
operating point; time invariance follows from the fact
that the operating point is fixed. Of course,
different operating points result in different models,

which explains partially the need for tuning.
be

Only single-input-single-output plants will
considered, even though much of the work summarized
here can be extended to the multivariable case.

2.3 Controllers

Only linear time-invariant controllers are

considered here, 1in the configuration of Figure 2.

The Proportional-Integral-Derivative (PID) controller,
the workhorse of process control, 1is described by the

formula:
de
u= 7+ fedt+ Kpe+ T -—u
Ti d dt (5)
where u = control variable
e = error
'I‘i = integral time constant
Kp = proportional gain
Td = derivative time constant
The PID controller 1is, of course, Jjust one
particular member of the class of controllers
represented by:
u(s) = H(s) e (s) (6)
For the PID controller,
= (7
H(s) Tis + Kp + Tds
The discrete equivalent of the PID controller is
-1
. 1-4q9° -1
generated by replacing s by h , where q is
the wunit delay operator and h is the sampling time.
Thus,
-1 h 1 T -1
H( = — + + =d -
q ) Ti ]__q—l Kp h (l q ) (8)
The difference equation corresponding to (8) is:

(1-a Du®) =f-e() +Kp(-aHe(r) + B(1-q1 Ze (o)
i

u(t) = u(e-1) + —Th—_+ Kp+%§1)e(t) - p+2Tdye(e-1)
1

h
+Eﬂe(t-2) (9)

h
Here again, the discrete PID controller is merely a
special case of

u(®) = H@ e () )

where H (q~1)is a ratio of polynomials in g1
The Smith predictor 1 has proven to be useful to
control systems with delay. The continuous-time

version is illustrated in Figure 3, where the Gp block

in the controller 1is a model of process, without
delay. The transfer function is:
y - HGp -sT
y 1 HGp °© (1)
d
Except for the delay, this is exactly the transfer

function obtained by controlling the plant Gp by the
controller H. Therefore, if a controller can be
designed for Gp, the plant Gp e—ST can be controlled



