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Introduction

This volume is based on the Eighteenth National Symposium on Fracture Mechanics, held in
Boulder, Colorado, 25-27 June 1985, sponsored by ASTM Committee E-24 on Fracture Test-
ing. The conference was held at the University of Colorado; the support of the CU Office of
Conference Services for the conference arrangements was excellent.

The National Symposium on Fracture Mechanics has served as an annual state of the art
review of current fracture research since its beginnings in 1965. The Eighteenth Symposium
carried on this tradition creating on open forum for fracture researchers from the whole world.
There were over eighty papers presented by formal talks and posters. Six speakers were specifi-
cally invited, including one from England, one from Japan, two from U.S. universities, one
from U.S. industry, and one from a U.S. national laboratory. The submitted papers were
grouped into 16 sessions. The papers on elastic plastic fracture mechanics made up four ses-
sions, with one session on each of the allied areas of ductile-to-brittle transition and J-integral
test methods. Four sessions on fatigue emphasized elevated temperature studies, including fre-
quency and hold-time dependence, and effects of short cracks. Two sessions were held on analy-
sis, including linear elastic and elastic-plastic analyses, and the remaining four sessions covered
applications, crack arrest, micromechanisms, and subcritical crack growth.

Continuing the standard practice for ASTM Symposium publications, each paper in this vol-
ume has been peer-reviewed by knowledgable researchers in relevant subject areas. The papers
accepted for this volume have been revised and carefully edited to promote significance, techni-
cal accuracy, and relevance. It therefore truly represents a broad view of the current state of
fracture mechanics research. It is recommended to stimulate and aid future research, to give
design and failure analysis practitioners needed insight and new approaches, and to contribute
to new and improved test standards through its record of advances in basic understanding and
the latest test procedures and results.

R. P. Reed

National Bureau of Standards, Boulder, CO
80303; symposium chairman and coeditor.
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William W. Gerberich!

Metallurgical Aspects of Crack-Tip
Failure Processes

REFERENCE: Gerberich, W. W., “Metallurgical Aspects of Crack-Tip Failure Processes,”
Fracture Mechanics: Eighteenth Symposium, ASTM STP 945, D. T. Read and R. P. Reed, Eds.,
American Society for Testing and Materials, Philadelphia, 1988, pp. 5-18.

ABSTRACT: Process zone models for fracture of fiber-reinforced concrete, metal-particle rein-
forced glass, and polymer crazes have good experimental verification. This is because the micro-
fracture process zone is often macroscopic in size or easily identifiable or both. Similar models
have been proposed for metals and ceramic microstructures. This paper addresses how the micro-
fracture process zone develops in such microstructures. Specifically, the microcrack evolution pro-
cess may be controlled by chemistry and microstructure as well as localized stress distributions.
The importance of this is that the microcrack distribution and the energy dissipation process in
the remaining ligaments behind the advancing crack front control the R-curve and final fracture
instability. Examples of R-curve behavior in ductile fracture and semibrittle composites are
shown, and a model for brittle fracture of steel is proposed. The latter shows that a semi-cohesive
process zone of variable size and strength may represent an approach to brittle fracture where
weakest-link models are not applicable. Predictions of fracture toughness for ferrite/pearlite
steels as a function of test temperature and grain size are obtained with such an approach.

KEY WORDS: fracture toughness, process zones, R-curves, microstructure, ductile ligaments,
composites, brittle fracture, cleavage

The process zone concept was introduced two decades ago by Krafft [1] as a fundamental
microstructural length parameter. Since then, there have been numerous applications of char-
acteristic length parameters to ductile fracture [2], metal-metal composites [3], cleavage in the
lower shelf region [4], and subcritical growth phenomena [5,6]. Although such process zones
recently have been reviewed [7], the microscopic and macroscopic character of such zones will
be addressed. This will then be applied to the ductile-brittle transition region of steels and,
specifically, to classes of steel which range from the lower shelf to toughness levels where mixed
modes may be becoming dominant. This is believed to be important because weakest-link hy-
potheses, for example, cleavage initiating at the largest carbide, cannot be applied to ductile
fracture. In all probability, they are also not applicable to the upper shelf region near the transi-
tion temperature where a mixture of microvoid coalescence and cleavage or quasi-cleavage is
found. In fact, the weakest-link hypothesis often might not apply to the lower shelf regime when
a fine crack is present, but may be restricted to fractures emanating from blunt cracks or
notches. The evidence for and treatment of multiple fracture origins rather than a single weak-
est link follows.

First, consider the process zone as a microscopic region where microcracks develop. This may
be a single fractured carbide near the nil-ductility transition temperature (NDTT) which, as a
weakest link, triggers cleavage in the surrounding grains. On the other hand, it may be a group
of second-phase particles such as sulfides or oxides which nucleate multiple regions of void

'Professor, Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN
55455.



6 FRACTURE MECHANICS: EIGHTEENTH SYMPOSIUM

growth. This zone, containing a distribution of microcracks, has been designated a semicohe-
sive zone [60] and is depicted in Fig. 1. Here, the crack-tip opening angle is approximately equal
to the crack-tip ‘‘final stretch,” displacement divided by the process zone, or 5/A [8-10]. Such a
zone would have to develop, at least in a two-dimensional sense, in ductile fracture where micro-
voids nucleate and grow at multiple origins along a growing crack front. Other types of zones
are depicted in Fig. 2, as taken from Ref 7. Brittle or semibrittle zones are depicted as being
filled with a series of microcracks of varying sizes or spacings within A. Such microstructural
zones could include properly oriented cleavage microcracks or populations of the weakest inter-
granular facets or brittle regions between ductile ligaments in two-phase materials. Next, the
theoretical concept will be illustrated and then it will be applied to microscopic and macro-
scopic composite data.

Theoretical Model

The theoretical concept was first presented [7] and described as a series of traction forces in
two zones, one a microcracked, semicohesive zone, and a second, monolithic, cohesive zone. A
depiction of equilibrium is schematically shown in Fig. 3 where the “fishhooks’ are trying to
pull the imaginary crack open while the “springs” in the two zones are holding it together. Note
that because of the voids in the semicohesive zone, the density of springs, that is, the traction
force, is less. This was first applied to organic solvent-induced slow crack growth in glassy poly-
mers where the larger semi-cohesive region was used to predict *“‘equilibrium” craze lengths
[11]. The microfibrils of the craze represented internal traction forces and in order to produce
additional crazing at the crack tip, after equilibrium, greater applied stress intensities would be
required.

With such a model as depicted in Fig. 3, integrating the stress field within each zone gives

172
K1<1> — 2(0. — 0g) cos“<£> — 20 COS_'<i> =0 1)
[ a a

Here, o is the strength of the semicohesive zone and o, is the strength of the cohesive zone. For
a ductile material, o is the flow stress, whereas for a truly brittle material it may approach the
theoretical strength [7]. In a yielding situation for crack initiation in an elastic-perfectly plastic
material, the parameters -are

e = Oy b=c+ A
(2)
o = ay(l — £,); a=c+ A+ Rp,

cToA=3/A

FIG. 1—Process zone model (Refs 8-10) for a growing crack. The crack-tip opening angle (CTOA) may
be represented by the ‘final stretch’ displacement, 5, and the process zone, A.
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FIG. 2—Process zone size variations, A, as a function of different controlling microstructural features.
(Courtesy of Ref 7.)

where

f» = microvoid volume fraction,
A process zone,

¢ = half-crack length, and
R p,, = plastic zone size for nucleating the process zone.

The assumption here is that a minimum strain or stress for failure, as related to the size of Rp|,
is required to initiate microvoids or microcracks in the absence of the process zone. Since in
plane stress, Rp, is given by

3)

there are three unspecified parameters K,, A, and f,. In principle, K|, is the initiation value
for the onset of crack growth and may be estimated by sensitive crack-tip opening angle (CTOA)
nonlinearities or acoustic emission. Both A and £, would be dictated by the microstructure and
could be measured by either serial sectioning techniques or fractographic analysis or both. It is
seen that once K, A, and f, are either measured or estimated, all parameters are known from
Egs 1, 2, and 3 for a material with a given yield strength, containing a crack of length c. Al-
though it appears as though K for equilibrium with the first crack jump through A is strongly



