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AN ANALYSIS OF EXPLICIT FINITE ELEMENT
APPROXIMATIONS FOR THE SHALLOW WATER EQUATIONS

by

S. Nakazawa, D.W. Kelly and 0.C. Zienkiewicz
Faculty of Applied Science
University College of Swansea
Swansea SA2 8PP U.K.

I. Christie M. Kawahara
Department of Mathematics Department of Civil Engineering
The University Chuo University
Dundee DD1 4HN U.K. Tokyo, Japan
ABSTRACT

Schemes for generating stable explicit algorithms for transient analysis
of the shallow water equations are analysed. Particular emphasis is given to
numerical dissipation and spatial as well as time stability. Examples include a
one-dimensional travelling wave, tidal flow and shoaling.

INTRODUCTION

In this paper we consider the application of the finite element method
to environmental flow problems governed by the shallow water equations. From the
computational point of view, the use of an explicit finite difference in time has
advantages of low core storage requirement and simple treatment of nonlinearity for
transient problems such as storm surge and Tsunami analysis. Numerical difficulties
however arise from the hyperbolic nature of the equations and the nonlinear convective
acceleration terms which make the standard Euler forward difference in time
unconditionally unstable for consistent or lumped mass.

A special local approximation of the mass matrix has been introduced
by one of the authors to obtain a stable explicit scheme [1]. This scheme has
been successfully applied to practical problems [2,3]. Also in recent years upwind
finite element approximations have been developed for second order elliptic problems
with significant first derivatives [4] and their application to first order hyper-
bolics has been suggested in [5]. Here we apply the Petrov-Galerkin finite element
approximations to the shallow water wave equations. In a simple one-dimensional
problem with linear interpolation and mass lumping the effect of upwind weighting
is identified as artifical dissipation. Generalising this result we damp the
Galerkin approximations to obtain a formulation which is easily extended to two-
dimensional and nonlinear problems. This approach also avoids the directional
property of upwinding and can easily be implemented in transient problems.

The selective mass lumping and damped Galerkin schemes are described
in the following sections. Special attention is given to their dissipative
properties and both time and spatial stability. The performance of the schemes
is then tested on some simple examples.

PRELIMINARIES

Defining u:(j=1,2) to be velocity components in x:(j=1,2) directions
and n the surface elevation, the vertically integrated Navietr-Stokes equations
for shallow water are given by



Bui Bui . 5 aui du,

I N ) + i, C T (.

e u 8xj g axi u axi (axj + 5;?) + fi (1)
oan 3 =

5p * 3% (H + n)“i = 0. (2)

The summation convention on repeated indices is used, and H, g, u and

f:(j=1,2) denote the depth, gravity, viscosity of the fluid and nonlinear

forces such as bed friction. Omitting the nonlinear and viscous terms from these
equations gives the familiar long wave equations in one dimension.

du on
e i — =
ot & 9X -
x €(0,1), t (0,T]
(3

Applying the transformation

vy VH —/g u

v, - vH /g n (4)

to Eqs.3 symmetrices these equations so that the system becomes

3vi 3vi
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where :
c = (-1 VegH .

EXPLICIT FINITE ELEMENT APPROXIMATIONS

For simplicity the present analysis will be applied to the simple transport
equation (5). Considerations of stability and dissipation are directly applicable
to the one-dimensional long wave equation but must be generalised for the full
two-dimensional nonlinear shallow water equations. The standard Galerkin approxi-
mation with linear trial functions of Eq. 5 with an Euler forward difference in
time gives

n+l_n "
M X X o+ Ky =0 6)
At

or recursively

R PUEE S SR )

Here all the coefficient matrices have the same tridiagonal banded structure
with the band terms given by

m, -2 1 4
Ni6

-1
Ki =2

and



The lumped mass approximation g is given ds

A lumped mass approximation to the left hand side only of Eq. (7) was
introduced in [1] and used with two-step Lax Wendroff time marching schemes. Details
of the stability and convergence are given in [6]. Applying this selective lumping
scheme to Eq. 7 we obtain the following difference expression for the i-th node at
the n-th time step.

_ n n _ cht n _.n
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Using Taylor series expansions of the solution at t=nAt and x=ih we can identify the
truncation errors in Eq. 8 by writing

av? av? i P A 2 %™ 2 3%°
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ot 9x 6At axz 2 atz 6 ax3 6 at3
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Differentiation of Eq. 5 first with respect to t and then with respect to x and
subtracting identifies

82v _ c2 32v
3t2 sz

Substituting in (9)

n n 2 n 3n
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i i h c At i c 2. .2 2 i 3
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(10)

Comparing Eq. 10 and Eq. 5 we can see that the Euler forward difference
has introduced a negative diffusion proportional to At which normally leads to
numerical instability. The selective lumping of the mass matrix gives a positive
diffusion with coefficient h2/6At. Obviously the critical time step for this scheme

h
crit V3¢ (11)

An alternative explicit scheme can be obtained using the "upwind" finite
elements described in [4]. Applying the Petrov-Galerkin method the weak form of
Eq. 5 is given by
* th N th
h’ ot © Tox

At

(w.

Applying the "upwind" test functions
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and the normal linear trial functions in space, the difference expression corres-
ponding to Eq. (8) with lumped mass matrix is

n+l _ . n _ chAt n B n _ _.y. D
hve ™ = hvy - [ (1+a)vi+l 20v 4 ¢! d)vi_l ] . (12)

Again using Taylor series expansions we can identify the added dissipation by
writing

n n 2 n 3n

ov . ov . 2 9 V. dv.
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Note that if we choose a to cancel the numerical diffusion as

cAt
h

the resulting recursion formula is exactly the same as the Lax-Wendroff finite
dii{ference scheme.
Difficulties arise when extending the upwind model to two-dimensions.
These difficulties can however be avoided if we generalise the diffusive character-—
istic of the Petrov-Galerkin scheme by defining the weak form of Eq. 5 as
v ov w, ov

h
TS

h hy _
te P Y e ) 7O e

where y is a coefficient of artificial viscosity and has the property that
y>0 as h>0. A similar scheme has been proposed in [7] with Hermite cubics. The
use of artificial viscosity in continuous—in-time Galerkin approximations has
also been shown to improve the rate of convergence of the standard Galerkin
procedure [8]. 1In [9] the Petrov-Galerkin method for convective-diffusion is
interpretted in a similar manner.

The lumped mass discretized form of the damped Galerkin scheme defined
by Eq. 14 has the difference expression

n+l _  n _ cbt n _.n At n B n n
bog o=y = Gy Ty YR Gy T 2wy tvip) LI5)
and truncation errors are again identified by writing
n n " n 3n
ov . . 2 9 V. 9 v.
1 1 _c At Lo B g 2,2 o2 1 3
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Choosing Y=c2At/2 we again obtain the Lax-Wendroff finite difference scheme which
corresponds to the minimum requirement of numerical diffusion. _Also choosing
y=ach/2 we reproduce the Petrov-Galerkin upwind scheme, and y=h“/6At the selectively
lumped scheme.

It is interesting to note that the scheme defined by Eq. 15 can realize
the unit CFL (Courant, Friedrichs-Lewy) property that the wave propagates from



v? tov) exactly when we choose At=c/h. All practical finite difference schemes
i

hiave this property. The critical time step defined by Eq. 11 however excludes this
property from the selectively lumped scheme.

STABILITY OF THE EXPLICIT SCHEMES

Following the procedure described in [3] we assume the solution at
t=nAt on x=ih to be of the form

v _ yn ejmlh an

where j=v/-~1. The condition for stable solutionl Zn+1 \ <1 requires that
n )
y

2 ;
6 EEy o+ 4 EE)? (cos wh-1) - cr (coswh -1) > 0 (18)
Pe Pe
*
with Cr = cAt and Pe = ch.
h Y

From the existence of the solution, we have the condition for wave
propagation

Cr <1 . (19)
*
For the range Pe < 2 where the diffusive part dominates the solution we have
*
Pe > 2 Cr (20)
*
and for the range Pe > 2 we get a condition
* 2
Pe = —61‘ . (21)

Note that the condition (21) corresponds to the minimum requirement of diffusion
in Eq. 16. If we satisfy condition (20) with Pe* < 2 an oscillation free
solution in both space and time will be obtained because pe* < 2 defines the
condition for freedom from spatial oscillation.

If condition (21) is satisfied the selective lumping scheme is stable
because substitution of

identifies %
Pe = 6 Cr

for this scheme. This result however suggests that this approximation can
produce an excessive amount of numerical diffusion.
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Figure 1 Stable region for the explicit schemes

NUMERICAL EXPERIMENTS ON A ONE-DIMENSIONAL TRAVELLING WAVE

To assess the explicit schemes we firstly look at the behaviour of the
solution for a simple example of Eq.5 with initial condition

v = 0 0.5 < x 1

| A

1 0<x< 0.5

with ¢=1.0 and v{0,t)=v(l,t). Taking h=0.1 and At=0.1 we obtain the solution
corresponding to the unit CFL property which is shown as the square pulse in Fig. Z,
In practical computation however we use At less than the unit CFL value to achieve
stability in irregular grids.

A series of numerical results are given in Fig. 2 for At=0.05 and 0.01
when the critical value for stability is At=0.1. The solution at t=0.2 is given in
Fig. 2a and Fig. 2b for the damped Galerkin and selective lumping respectively. Since
the problem is closed spatially and there is no energy leak through the boundary
we have

9 _

il vl =0
where || . || is the usual L2 norm [10]. As shown in Fig. 3, this property is
better approx?mated by the damped Galerkin procedure than by the selective lumping
scheme when appropriate control of the numerical damping is exercised.
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Figure 2 Solutions for one-dimensional travelling wave
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Figure 3 Conservative properties of the numerical schemes



To investigate these dissipative characteristics further we write Eq. 7
e n+l n

)\J/ = A/ v
where A is the amplification matrix of the explicit schemes applied to the symmet—
rised equation (5). The complex eigenvalues of A are the participation coefficients
for the eigenmodes and in the absence of any diffusion should all have unit modulus.
In Table 1 we give the modulus of the eigenvalues of A for selective lumping and the
damped Galerkin schemes applied to the one-dimensional region. Also given is the
participation of the eigenmodes to give the initial conditions used above. The modes
affected by the numerical dissipation can be seen to make a significant contribution
to the solution. (Note that all eigenvalues and mode participation factors are complex
and only theirmodulus is given here).

Selective lumping Damped Galerkin Modal participation
ct=0.1 Cr=0.5|Cr=0.1 Cr=0.5 Cr= for tra"?iling)wave
Pe = 20 Pe = 2.7 Pe =
1.0 1.0 1.0 150 1.0 1..508
0.949 0.985 1.0 0.979 1.0 1.059
0.949 0.985 1.0 0.979 1.0 1.059
0.810 0.925 0.998 0.906 1.0 0.157
0.810 0.925 0.998 0.906 1.0 0.157
0.627 0.793 0.994 0.760 1.0 0.363
0.627 0.793 0.994 0.760 1.0 0.363
0.454 0.586 0.986 0.541 1.0 0.179
0.454 0.586 0.986 0.541 1.0 0.179
0.348 0.374 0.981 0.294 1.0 0.230
0.348 0.374 0.981 0.294 1.0 0.230
Table 1. Modulus of eigenvalues of amplification matrix.

NUMERICAL EXPERIMENTS ON A ONE-DIMENSIONAL BORE

The one dimensional bore problem is shown in Fig. 4. We use h=0.025 and
At=0.01 for a series of experiments where g and H are taken to be unity giving
Cr=0.4. Fig. 4 shows the deformation of the wave at t=0.1 for different Peclet
numbers. As predicted by the stability analysis, for Pe< 2 the solutions are
stable in time and space. For 2<Pe<2 the solution is stable in time but spatial
oscillations occur. Cr

I.Ogh— = Pek
° 5.0 S
¥ 2.5 v 9.8
= 2:0

0.4 0.5 0.6 0.7

Figure 4 Deformation of wave front of one-dimensional bore



EXTENSION OF THE EXPLICIT SCHEMES TO THE NONLINEAR SHALLOW WATER EQUATIONS

The analysis of the previous sections has been applied to one of the
symmetrised equations (5). Writing the difference expression (15) for both
characteristics and applying the transformation (4) leads to the matrix equation

. |n 2y n -4y n 2y _ n
Y - o h & Yi-1 .| B . % R 8114+
2h
. 2y -4y _ 2y
Ny S Niaq S ny S~ LT
I .
which can be identified as
Bun an? azu“
S —, 2
at & Tox ¥ =%
X
s n n 2. n
Bni aui 3 ni
5c T B Tk T YT 2 (23)
9x

To extend this damped Galerkin approximation to two—dimensional problems
including nonlinear acceleration consider triangulation of the bounded domain ©
and the weak form

'aui aui Bni
(W,—gg ) o+ (W,uj S;T) +g (W’SQT) =0 (24)
J ]
My 9
(w, at) . (w,_ﬁj (H+n)ui) =0 (25)

where the viscous term and body forces are neglected. On each triangle we construct
a finite element approximation Y50 and test functions w, by using linear interpola-
tion functions. Then the damped Ga?erkin finite element approximation is given by

du, Ju. an. ow. ou.
= ih i1h ih h 1
Gopoge ) ¥ (ot ) * 8 G ) 4y G 53D = O
J J d
on. oW,
= ih 3 h an, _
S e (wh’axj(H+nih)ujh) . Y(ij’8x§ =0 (26)

By a Taylor series expansion at t=nAt we can determine the minimum
requirement for numerical damping for the explicit time integration scheme to be
¥
(11]

At

2 (27)

2
Y. = (H+n) + |u.
v g Jus |

for the j-th component. We have taken the variables in Eq. 27 to be averages on
the element.




10
At present the stability analysis summarized in Fig. 1 has been used as

a qualitative guide for the two-dimensional nonlinear program with

ce€ = (Vg(H+n) + u) At
h

and h the length of the smallest side on the elements. The examples show that
stable schemes can be obtained.

TIDAL ELEVATION IN A CLOSED BASIN

A periodic twelve hour water elevation of 0.5 metre amplitude was applied
to nodes 1, 2 and 3 of the constant 10 metre deep tidal basin shown in Fig. 5. The
water surface elevation at node 55 at the centre of the basin is plotted in the
figure. The effect of numerical diffusion is negligible in this example because
the depth of the water in the basin is almost uniform at all times and there is
little difference in the solution for the selective lumping and damped Galerkin
schemes. The results are essentially identical to those reported in [2].

For this example a time step size of 3C seconds was taken so that the
solutions required more than 4000 time steps. Both schemes however only required
approximately 50 seconds CPU time on a CDC 7600 and ran in less than 20 K words
of memory

5460 46

2
? s
3 41 47 S3 9 3 i 83

3 & 9 12 15! 18 21 24 7130 34 39 4S S1 3 29 S & 85\90
2 ] 8 11 14 13 320 23 26\29 33 38 44 S0 6/ & % S _\89
|
|
1 4 7 10 13 16 _N\19 22 25\[28 32 37 43 49 ] 4 83

Finite element discretization

— — — — — selective lumping

damped Galerkin
(Pe* = 2,0)

Figure 5 Tidal elevation in circular basin (Cr = 0.3)



