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FOREWORD

This volume deals with. the following loosely related subjects: hydrodynamic
instability, the statistical theory of turbulence, water waves, waves in a medium
with random properties, and the theory of guidance and control. These subjects
all use similar mathematical methods and ideas, and it seemed impossible to give
- an adequate picture of contemporary views about hydrodynamic instability without
touching on them all. The fact that such a diversified group of problems are
- exhibited in hydrodynamics alone can only make one admire the inexhaustibility
of fascinating problems that occur in nature. Yet we have hardly tapped on the
range of problems that arise in astrophysics. '

Even a casual perusal of the papers below will bring out a steady trend in theories
of hydrodynamic instability, from the linear deterministic processes analyzed so
successfully by Kelvin and Rayleigh, to nonlinear random processes whose theory
must be regarded as the primary goal of future research efforts. We hope this
book will help to stimulate and guide such efforts. - -

The editors wish to thank the authors for providing an excellent collection of
papers dealing with such a diversified group of topics and for their cooperation in
the publication of this volume. ‘

‘ G. BIRKHOFF
R. BELLMAN
C. C. LN
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ON THE INSTABILITY OF SHEAR FLOWS

BY
C. C. LIN AND D. J. BENNEY

1. Introduction. One of the most basic and challenging problems in fluid
mechanics is to reach an understanding of the various physical mechanisms involved
in the process of transition from laminar to turbulent flow. It is now well known
that in many instances the initial process is one of instability with respect to
infinitesimal disturbances. - This initial disturbance could take on the form of a
steady secondary flow, as in the case of convective instability, or the form of a
small oscillation, as in the case of eertain shear flows. It is quite likely that the
processes governing the subsequent development of such disturbances are also
different. The present note deals with the case of shear flows.

We consider a small disturbance of the basic flow by writing the velocity and
pressure of the disturbed motion in the form :

ulxpt) = u0q) + auP(x,t) + uPx,t) + - - -,
Plxt) = pO(x) + apV(xt) + aZp@(x;t) + - - -

(i,k = 1,2,3) where a is a measure of the amplitude of the disturbancgs and all
the variables are dimensionless. The above expressions must satisfy the equation
of continuity and the Navier-Stokes equations, from which we obtain a sequence
of equations governing the motion of each order. The equations of order a° give
the basic flow, those of order a give the usual linear theory, and those of the order
a® give the nonlinear effects under consideration. ‘

In the case of shear flow, the linear terms give rise to stable and unstable normal
modes in the form of waves. There is now ample evidence to support the correct--
ness of the theory. The mathematical basis of the theory involves, however, many
subtle points, especially with respect to the relationship between the solutions at
finite Reynolds numbers and the inviscid limit. The uniformly valid asymptotic
solutions for large Reynolds numbers have been studied by Wasow [5], by Langer
[6] and by Lin and Rabenstein [7]. Other issues have been invésﬁgated by Case
[8] and by Lin [9]. The major results of these investigations will be discussed in
§§2, 3. - ‘ '

The nonlinear efféct has been examined theoretically by Meksyn and Stuart [1],
and later by -Stuart [2], using a somewhat different approach. A theory of
secondary instability has also been proposed by Gortler and Witting [3]. Experi-
mental 'observations, especially those by Schubauer, Klebanoff and Tidstrom [4],
however, show remarkable characteristics in the behavior of the flow not account- -
able by the theories of these authors. In particular, the experimental observations
indicate the existence of longitudinal vortical motions (with axis along the direction
of the basic flow) which give a redistribution of the momentum of mean flow in the

1

(1.1)

‘



2 C. C. LIN AND D. J. BENNEY

plane normal to it. Such a vortical motion. is very similar to that calculated by
the Gortler-Witting theory, but its location relative to the primary oscillation is
found to be exactly opposite in phase to the theoretical prediction. The theories of
Meksyn and Stuart and of Stuart are based on two-dimensional primary oscillations
and therefore fail to provide for such motions.

In the present theory, we examine the general equations.governing the terms of
the second order for a first-order primary oscillation whose amplitude varies
periodically in the cross-wind direction. We found that the nonlinear effects
néturally divide themselves into two‘f:'ategories: (1) the “two-dimensional” effects
examined by Meksyn and Stuart with a variation in intensity in the spanwise
direction, and (2) the intrinsically three-dimensional effects which include the
longitudinal vortical motions. Detailed calculatioris were made with a basic
profile

UO(x,) = U(y) = tanh y. .

It is found that the combined effect of the nonlinear longitudinal vortical motion
and that due to the primary oscillations yields a net motion similar to that observed
by Schubauer, Klebanoff and Tidstrom. The vortices are found to be at points -
where the primary oscillation yields a convex streamline. Other general features
of the flow are also similar between the theoretical and the experimental results.
The agreement is all the more remarkable since there is a substantial difference in
the basic profile between the theoretical and experimental cases. It is believed that
this indicates the generality of the features revealed by these investigations.
Another general feature is the important role of the critical layer. It is found
that the secondary motion is generally.larger than the order of a2 by factors in-
volving powers of («R)“? where R is the Reynolds number of the basic flow.
This is the familiar parameter that occurs with inner friction layers. Thus, the
effect of these second-order terms becomes large through the weakness of the-
critical layer; but once this large secondary flow occurs, its magnitude remains of
the same order even outside of the critical layer. The importance of the critical
layer in the transition process has been conjectured in a previous discussion of other
‘nonlinear effects. A brief description of these nonlinear effects found from the

theoretical investigations and their comparison with experiments will be presented
in §§4-6. ’

2. The linear theory. We shall now discuss the linear theory of hydrodynamic
stability especially in connection with the behavior of the solution at large Reynolds
~numbers. We consider the stability of a parallel flow, for example, the pressure
flow through a channel between parallel plates placed at y = + 1. The flow is in
the x-direction with a velocity distribution U(y) = 1 — y* (or some other parabolic
function). The equation for a two-dimensional small disturbance is

or o  ,d*U

2.1 7’+Ua+v EV?=A7A~C’
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where (' is the disturbance vorticity, related to the dlsturbance stream function
¥'(x,y,t) by . 3

, 0% '
(22) = i

‘ e T =AY

and the velocity components are given by
L ad
23 / W= Er o= -

The constant » is the kinematic viscosity coefficient, or the inverse of the Reynolds
npumber in the present dimensionless formu]ation The boundary conditions are

2.4 W=0v=0 at y=41.

The solution of (2.1) can be treated either in terms of the theory of normal
modes or as an initial value problem. In the first approach, we superpose parttcular
soluiions of the form

(235 ' ¥ (x,0,1) = Re {$(y)e™ =M},
where ¢(y) satisfies the familiar Orr—Sommerfeld equation

(26) ¢ — 24" + ol = i(afn)(U — X" — o) — U"],
which is to be solved with the boundary conditions
@n Hk ) =¢ (1) =0.

In the initial value approach used by Case [8], we consider the Laplace transform

of ¥'(x,y,t) with respect to ¢ and its Fourier transform with respect to x (« real,
Re (p) > 0):

2.8 P'(y;0p) =f f Y(x,p,t) - e%dx - e=?'dl.
0 — %

After solving for #'(y;a,p) in terms of the initial conditions and the boundary
conditions, we calculate y’(x, y,¢) by the inverse transform

@9 Vo) = [ [#Omp - eda- erap

where the integration with respect to p is taken along the line Re (p) = p, > 0 in
the direction of increasing Im (p). The normal mode representation is obtained
by evaluating the p-mtegral at the singularities of ¢’ in the p-plane by the theory of
residues. _
A natural approach to the solution of (2.1) for the case of small viscosity is to
begin with the case v = 0. However, since the resultant equation contains spatial
derivatives of lower orders, the perturbation procedure is singular, and one has to
guard against all the associated pitfalls that may occur. For example, the complete
equation (2.6), bemg regular, has only discrete eigenvalues; whereas the reduced
equation

(2.10) | \(U — o)¢" — a2¢). —U'¢=0,
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in general has a singularity at y = y, where U = ¢, and therefore possesses
continuous eigenvalues when the boundary conditions

(2.11) Hx1) =

are imposed. The question may then be raised: in which sense does the inviscid
limit represent an adequate approximation to the physical situation (which is after
all always viscous)?

An obvious answer is the following. The solutions of the boundary value
problem (2.1) fall into-two classes: (1) those which approach the inviscid solution
in the limit »—~0; and (2) those which do not. A priori, either class may be
empty; but closer examination reveals that there are important solutions in both
classes. The members of the first class, which are expected to exhibit the' boundary
layer behavior, can be further divided into two sub-classes: (a) those with a
boundary layer thickness of the order of »'/2, and (b) those with some other thick-
ness. The initial value method easily yields solution of class (a), whereas solutions
of class (b), with a boundary layer thickness of the order of »'/3, have been known
‘through the method of normal modes. It is noteworthy that the unstable dis-
turbances responsible for the initiation of turbulence in the channel or the boundary
layer is of this latter type.

It is perhaps illuminating to examine a simple example to illustrate the variety

of behavior of solutions when a process of singular perturbation is involved.
Consider the equation

2
2.42) ou ou 2u

to be solved in the region 0 < y < 1 with the boundary conditions #(0) = u(l) = 0.
The inviscid problem is
ou, Ou,

(2.13) .- a_y=°’

with no boundary conditions required. The normal modes (solutions obtained

~ by the method of separatlon of variables) of the viscous problem are the discrete-
set of functions

(2.14) Un(pst,v) = w,(y)e?r,

where

. w, = e sin nmy,

2.15) B o k* e,

andn=0,1,2-- . None of these eigenfunctions has a limit as v —0. On

the other hand, the inviscid problem has the normal modes’

(2.16) Uy = eMerat,



ON THE INSTABILITY OF SHEAR FLOWS 5

with continuous spectrum for the eigenvalue o. It is clear that if we attempt to
solve the complete equation (2.12), with the initial condition e*¥, we should get a
solution u(y,?,v) which approaches the above inviscid solution (2.16) as » — 0.
On the other hand, the representatign of this solution in terms of the normal modes
u,(y,t,v) is of the form '

(217) u(y,t,v) = i A"('V)wn(y,v)e”"(”)‘,
1

where we have emphasized the dependences of A,, w, and p, on ». It is obviously
a complicated problem if one tries to calculate the limit of u(y,t,») as » — 0 from
the above series.

The above example illustrates the following. A4 normal mode in the inviscid
theory may not be the limit of a normal mode in the viscous theory. Conversely, a
normal mode. in the viscous theory may not have an inviscid limit. This exemplifies
the classification of solutions into the two classes (1) and (2) above. The example
is, however, too simple to illustrate the further subdivision of solutions of class (1).

We shall not go into further discussion of the relative merits of the method of
normal modes versus the method of initial values—which is made elsewhere.
Since we are going to hear from Professor Case on the method of initial values, we
shall proceed to the method of normal modes, which depends on the solution

of the eigenvalue problem (2.6). We are especially interested in the cases where
v is small.

3. Asymptotic solutions of the Orr-Sommerfeld equation. It is well known that
the equation (2.6) has formal asymptotic solutions of the forms

(3.1) ¢=¢,«n+$¢m+. .
and ‘
(3.2 $ = exp GRIQ0) [ 1 + = 1;)1,2 o,

Y .
0(y) = f U = .

However, these solutions have singularities at the point y, where U — ¢ = 0 '
whereas the original equation (2.6) is perfectly regular at that point. Search for
a system of regular solutions with tractable asymptotic behavior has been made by
Wasow [5], by Langer [6], and by Lin and Rabenstein [7]. The relationship
between the methods used has been discussed in the last mentioned paper the
main ideas of which will now be summarized.

To put it in a more general perspective, we consider the linear differential
equation of the fourth order

(3.3) L(¢) = ¢ 7+ A {P(’c A i(ﬁ + O(x. 1) —é ¥ R(x,l)'l’} =0,
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when the parameter A is lﬁrge. In the above expression: all the three functions
P(x,4), Q(x,4) and R(x,2) are analytic functions in the complex variable x, and they

depend on 2 in such a manner that asymptotic expansions of the following form
hold:

(.4) Fx,0) = io- AF ().

Especially we are interested in the behavior of the solution in the neighborhood of
a simple zero of the function Py(x). Such a point is called a turning point (of the

first order). It is of special interest because asymptoti¢ solutions of (3.3) in the
form

(3.5 ¢ = 5@ Eo A= (x)

exhibits singularities at such a point even though the point is a regular point of the
differential equation (3.3). Other solution forms must therefore be found, if we
wish to find a complete set of asymptotic solutions uniformly valid in a neighbor-
hood containing the turning point.

We base our solution on the simplest of equations of the type (3.3); namely,

(3.6) L(u) = u'* + 2z + o’ + Pu) =0,

where « and § may depend on A asymptotically in the following manner:

(3.7a) a= S A,
. n=0

(3.7b) B=3 ingm.
n=0

The solutions of this basic reference equation (3.6) can be studied by the method
of Laplace transformation, as was carried out by Rabenstein [10]. . Our aim is
to show that we can obtain asymptotic solutions of the form

(33) $(x) = cu(z) + (@) + cE) + @),

_wh'ere the variables z and x are connected by a suitable analytic function (e.g.,
(3.10) below), and the functions c/(x,4) all have the asymptotic behavior (3.4).
Actually, it turns out that

"¢y = O(1), and cyc3 = C(A72).

The method for establishing such a solution will be described below. For practical
purposes, once we know the existence of the solutions of the form (3.8), the
coefficients ¢; can be calculated by using the formal asymptotic solutlons of ¢
and u of the type (3.5).

The derivation of the solution (3.8) is made as follows. We first carfy out
finite transformations such that the equation (3.3) is reduced to a form as close to
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(3.6) as possible (no approximation being made in this step). It can be shown that
one can always achieve the normal Jorm,

.(3.9) Lo(x) = 2 + 2%zx" + eox’ + Box)
’ = May + by’ + A& + ~2dy"),

where o, and S, are constants while d, b, ¢ and d have the behavior (3.4). Such
a transformation is carried out in two steps:

First transformation. We introduce into (1.1) the new indépendent variable,

3 (= 2/3
(3.10) z= [5 f [P.,(x)]”zdx:l ,
,o .
and the new dependent variable,
(3.11) (2.2 = $(x,1)[Po(x)/z]"/4.

This will have the effect of retaining the general form of the equation (1.1) but
casting Py(x) into the independent variable z itself.

Second transformation. Next we consider a transformation of the form,
B12) - x =A@y + By + ACz Ay + A-2D(z, )",

where A4, B, C, D has the behavior (3.4). By formal differentiation, we obtain the
transformation in the vector form,

(3.13) x = Gy,
where
(3.14) X-= (02" A7 " A7),
(3.15) Y = ('P»W,’l—l'/’”’l—z’/’m ’
and G(z,4) is a nonsingular matrix with asymptotic dependence on 1 in the manner,
(3.16) G(z,}) = Y AI"G™)(z2).
® n=0

It can be shown by explicit calculation that this is indeed possible with a finite
number of terms, all regular in z. In the process of carrying out this transfor-
mation, it will become clear that the constant oy in (3.9) is indeed completely
determined by the given equation, and that the constant Bo is also determineéd in
the cases where o is an integer, positive, negative or zero. ‘

Construction of the asymptotic solutions. The construction of the asymptotic
solutions of the normalized equation (3.9) then follows usual methods. If we
intreduce the vector

(3.17) u = (uu A ),

where u is a solution of (3.6), then we may expect it possible, by proper determina-
tion of « and 8 to obtain formal solutions of the structure, '



8 C. C. LIN AND D. J. BENNEY

(3.18) X = Hu,
and with H expected to be of the form,!
(3.19) H=T+ 3 I™hm(z),
m=1
where [ is the identity matrix. Combining (3.13) and (3.18), we may write
(3.20) X =GY = HU,
or
(3.21) ¥ = G'HU,

where U, ¥, X are fundamental matrix solutions of the system of equations
corresponding to the fourth order equations for u, 9 and y. For convenience of
reference, we list the equations for u and ¥ explicitly. The equation for u may
be written

(3.22) Fe Mu,
where ' ;

0 1 0 0

0 0 A 0
(3.23) : M= 0o 0 o al

- —=a —2z 0
The equation for x may be written as
d

(3.24) X _ Mo+ O,

dz
where M is obtained from M by putting & = ay, § = f,, and

0 0 0 0
0 0 0 0
. = -1
(3.25) e= 1 0 0 -0 ol
a b ¢ d
in which
(3.26) a=a+ (B — By, b=>5b+ (x — o).

If we terminate the series (3.19) with A‘™(z) as the last term, we obtain the nth
approximation,

(3.27) Xn = H,u,

which satisfies the differential equation,

ax
3.28 = = (M,
( ) dZ ( 0 + En)Xn,

! In certain special cases, fractional powers of 4 may occur; but the general nature of the
theory remains unchanged. '
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with
(3.29) ' € — €, = A=(MDA,

where A is a matrix of the same form as de. The equation (3.28) is the approxi-
mating related equation of (3.24). Heuristically, it would appear natural to think
of (3.7) and (3.9) as asymptotically equivalent, and to expect that once the con-
struction (3.27) is made, it should be easy to prove its asymptotic validity; namely,
to show that there are actual solutions of (3.24) which is approximated by (3.27).
Although we found it possible to do this, the proof was not easy. It depends on
the examination of each individual solution in a particular fundamental set of four
solutions. Possibly a more general theorem can be established which corresponds
more closely to heuristic expectations.

4. The classification of nonlinear effects. As we have mentioned earlier the linear
theory gives an adéquate representation of the motion when the disturbances are
- very small and it is also capable of predicting the onset of instability. However,
as these disturbances grow the nonlinear terms in the equations of motion must
be included in the analysis. For finite amplitude oscillations it is well known that
two new features appear: (1) the excitation of higher harmonics of the primary
oscillation and (2) a modification of the original flow profile by the action of the
Reynolds stresses in producing a redistribution of momentum. Meksyn and
Stuart have calculated this modification for flow between two parallel walls when
the primary oscillation is strictly two dimensional.

One point of intefest is the relative importance of two and three dimensional
disturbances. On the basis of linearized theory, Squire’s result applies. Thus, to
estimate the onset of instability one need only consider two dimensional oscillations.
These two dimensional waves are indeed observed experimentally during the
initial instability. However, one must not be tempted to read more into Squire’s
theorem than it actually implies. For example, at a Reynolds number beyond the
critical Reynolds number there will be unstable three dimensional waves and there
is no guarantee that the most highly amplified disturbance will still be two
dimensional, even on the basis of linear theory. The details would depend on
the particular profile. Indeed the simple observation that turbulence is an
essentially three dimensional phenomenon suggests that this two dimensional
supremacy cannot be expected to persist through the finite amplitude regime.
Recent-experimental evidence (to which we will refer later) points strongly to the
desirability of a theoretical investigation of three dimensional disturbances.

We now examine finite amplitude oscillations in a given parallel flow, paying
special attention to the three dimensionality. This is done by a straightforward
perturbation from the linear theory as we shall describe below.

If p, ¢, w denote the pressure, velocity and vorticity respectively and we set up
the perturbation (suggested in. the introduction) by writing

(4_1) p= p(O) + ap(l) - a2p(2) + -
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4.2) q4=q9 +aq"V +aq® + - - -,
4.3) 0 = 0 e gl e Fp . » »

s

where q'? is the original basic flow, ¢ the primary oscillation, etc. The symbol
a is used to denote a perturbation amplitude, and p'® is the pressure distribution
associated with the basic flow. We take xyz as rectangular coordinates in a given
“ parallel basic flow ¢‘© = (u{(»),0,0), and consider waves of small amplitude
propagating downstream having a possible z variation of amplitude. We write

4.9 ' g™ = (u™ ™ wim),
4.5) w® = (E(n),n(n),g(n)) = curl q(n)_

Equating successive powers of a to zero in the continuity equation and in the
Navier-Stokes equations we have

(4.6) divg™ =0,
aq(") - n
@.7 o + 2 (@ Vg = —Npi™ o Aq‘"’
If a is the downstream wave number of the primary oscillation, we may write,
4.8) pO = pP(p,z,0)e" + p{O*(y, z,t)e“““ '
(4.9) 40 = qP(p.zD)e™ + ¢ (y,z,0)e ",
(4.10) Wl = VS e + w{P*(y,z,t)e ',

where an asterisk denotes a complex conjugate. The equations governing the
first order motion are

1) (D
foufd + o + B 0,

.0y oz
0) 2
 FrnEee G nilpez-de
U_: Ty b= % TR (ay= 4~ “z) w

The second order motion which we shall refer to as the secondary flow can be
written as the sum of a mean motion and a second harmonic oscillation. Supe-
scripts have been used to denote the order of the motion and subscripts for the
harmonic content. Thus we have

(4.12) P2 = pA(y,z,t) + pR(y,z,t)e¥ ™ + p*(y,z,t)e2,
(13 q® = qP(y.z.t) + Pz + gP*(p,z)e e,
(4.14) w® = wP(y,z;1) + 0P(y,2,0)e¥* + wP*¥(y,z,1)e 2,



