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Preface

A book about linear orderings? You mean total orderings? What can you
possibly say about them? After all, besides the natural numbers, the integers,
the rationals, and the reals, what linear orderings are there?

These questions, usually unspoken, were common. It is my hope that the
reader will find this book a satisfactory response.

My interest in linear orderings was first aroused by an old paper of
Dushnik and Miller. Perhaps you too will find the following question
interesting:

Given a well-ordering 4, it is easily verified that any order-preserving
map from A to A (that is, fla) < f(b) whenever a < b) is also non-
decreasing (that is, f(a) > a for alla in 4.) Is the converse true? That is,
given that any order-preserving map from 4 to A is non-decreasing,
does it follow that A4 is a well-ordering?

They answered this question using a simple, elegant technique. I observed
that a number of theorems about linear orderings (including one of my own)
were proved using variations of this technique, which I have called “con-
densing linear orderings.” That many different facts about linear orderings
share an underlying theme suggested that there is a subject called linear
orderings which is more than just a collection of isolated facts.

As I examined the literature, I became more convinced of the usefulness
of presenting the extensive material on linear orderings in a unified manner.
I found that the various groups of people who studied linear orderings were
generally unaware of other people’s work. I also found that the lack of a
comprehensive treatment resulted in theorems being re-proven (like Haus-
dorff’s Theorem 5.4) and techniques being rediscovered (like that of Dushnik
and Miller’s Theorem 9.1).

My study of the literature also convinced me that there was too much
material for one book. It took a while for me to become convinced of this,
and I have persisted in incorporating more and more material into this book.
However, I have learned (with apologies to Koheleth) that of writing a book
there is no end—and so this book is now, thank God, completed, and it
contains just what it contains.
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My original goal was to include everything known about linear orderings
not already in Sierpinski’s Cardinal and Ordinal Numbers. At a later time,
my more modest goal was that the book should contain what every logician
would want to know about linear orderings. Still later, although I no longer
had a clearly formulated goal, I knew exactly what material the book would
contain. In retrospect one might say that, like any author, I put into the book
precisely the material that most interested me.

The reader who wishes to look further will find bibliographies attached
to each of the later chapters and a rather complete bibliography of all articles
on linear orderings (including those not referred to in the text) at the very end.

What 1 have included can be seen from the table of contents. The book
divides naturally into three parts: Introduction to Linear Orderings (Chap-
ters 1-3), Combinatorial Aspects of Linear Orderings (Chapters 4-11), and
Logical Aspects of Linear Orderings (Chapters 12-16).

The introductory part contains some material with which every mathema-
tician should be familiar and other material which, though introductory, is
less familiar. By including this material the book becomes essentially self-
contained and can be used as a textbook for a course on linear orderings—
at either an undergraduate level or graduate level, for either combinatorialists
or logicians. Combinatorialists will find that the first two parts of the book
are completely self-contained. For those combinatorialists who would like
to read on and see why logicians are interested in linear orderings, I have
provided an introductory chapter on mathematical logic.

Having said that the book is self-contained, I must immediately backtrack
a little bit. The natural context, from a mathematical point of view, for dis-
cussing ordinals is axiomatic set theory, but presenting that context would
make this book too long and, more seriously, would deflect the reader from
getting into the subject of linear orderings. I therefore avoid introducing
axiomatic set theory and instead assume a naive familiarity with notions of
set theory (like cardinal numbers) and a naive acceptance of the axiom of
choice. (When a less naive point of view is appropriate, I invoke the context
of Zermelo—Fraenkel set theory with choice (ZFC).) One consequence of this
position is that many results which are more set-theoretic in character un-
fortunately are not included in this book. This position also leads to some
difficulties when, in Chapter 3, each ordinal is viewed as the set of all smaller
ordinals and each cardinal number is viewed as an ordinal; but these difficul-
ties can be resolved by any reader whose interests are foundational or over-
looked by any reader whose interests lie elsewhere.

My interests in model theory also provided some incentive for writing
this book. While teaching model theory, I felt that there was a dearth of
concrete examples illustrating the basic notions, and so I was led to investi-
gate various classes of structures. I found that linear orderings and partial
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orderings served well as testing grounds for model-theoretic concepts and
conjectures. The examples and observations I found illustrative I have in-
cluded in the appropriate chapters. As a result, Chapter 13 can be used,
together with certain earlier material, for an introductory course in model
theory. Similarly, Chapter 16 can be used for an introductory course in
recursive function theory.

Essentially none of the non-introductory material has ever appeared in a
book; much of the research reported is relatively recent. I have tried to
attribute concepts and results to their creators or discoverers; any lapses I
sincerely regret. The non-introductory sections of Chapter 16 consist largely
of my own results; other unpublished material has been incorporated into
various chapters.

The book contains a large number of exercises. Although it is common to
distinguish between easier and more difficult exercises, I have chosen not to
do so—leaving that too as an exercise. All unproved lemmas and theorems
in the first three chapters (and occasionally elsewhere) are indicated by a
A rather than the Wl used at the end of a real proof; these should also be
treated as exercises and verified by the reader.

Books are meant to be read, and mathematics books should not be excep-
tions. I have tried to write clearly and discursively, attempting to reveal
what the notation often conceals. In this I have tried to follow Sierpinski’s
example. It is for the reader to judge whether this attempt was successful.
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