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Light

ight, a basic aspect of the human environment,
I cannot be defined in terms of anything simpler or
more directly appreciated by the senses than itself.
Light, certainly, is responsible for the sensation of sight.
Light is propagated with a speed that is high but not in-
finitely high. Physicists are acquainted with two methods
of propagation from one place to another, as (1) particles
and as (2) waves, and for a long time they have sought
to define light in terms of either particles or waves. In
the early 19th century a wave description was favoured,
though it was difficult to understand what kind of wave
could possibly be propagated across the near-vacuum of
interstellar space and with the extremely high speed of,
300,000 kilometres per second (186,000 miles per second).
In the latter half of the 19th century a British physicist,
James Clerk Maxwell, showed that certain electromag-
netic effects could be propagated through a vacuum with
a speed equal to the measured speed of light. Thus, in
the second half of the 19th century, light was described
as electromagnetic waves (see ELECTROMAGNETIC RADIA-
TION). Such waves were visualized as analogous to those
on the surface of water (transverse waves) but with an
extremely short wavelength of about 500 nanometres (one
nanometre is 10~ metre). The analogy is valid up to a
certain point but the experimental results obtained at the
end of the 19th century and in the early years of the 20th
century revealed properties of light that could not have
been predicted from knowledge that was obtainable about
other waves. These results led to the quantum theory of
light, which in its primitive form asserted that, at least
in regard to its emission and absorption by matter, light
behaves like particles rather than waves. The results of
certain important experiments on the spreading of light
into shadows and other experiments (on the interaction of
beams of light) that supported the wave theory found no
place in a particle theory. For a time it was believed that
light could not be adequately described by analogy with
either waves or particles—that it could be defined only by
a description of its properties. A reconciliation of wave
and particle concepts did not emerge until after 1924.
Two properties of light are, perhaps, more basic and fun-
damental than any others. The first of these is that light
is a form of energy conveyed through empty space at high
velocity (in contrast, many forms of energy, such as the
chemical energy stored in coal or oil, can be transferred
from one place to another only by transporting the matter
in which the energy is stored). The unique property of light
is, thus, that energy in the form of light is always moving,

and its movement is only in an indirect way affected by
motion of the matter through which it is moving. (When
light energy ceases to move, because it has been absorbed
by matter, it is no longer light.)

The second fundamental property is that a beam of
light can convey information from one place to another.
This information concerns both the source of light and
also any objects that have partly absorbed or reflected or
refracted the light before it reaches the observer. More in-
formation reaches the human brain through the eyes than
through any other sense organ. Even so, the visual system
extracts only a minute fraction of the information that
is imprinted on the light that enters the eye. Optical in-
struments extract much more information from the visual
scene; spectroscopic instruments, for example, reveal far
more about a source of light than the eye can discover by
noting its colour, and telescopes and microscopes extract
scientific information from the environment. Modern op-
tical instruments produce, indeed, so much information
that automatic methods of recording and analysis are
needed to enable the brain to comprehend it.

From the standpoint of wave motion, blue light has a
somewhat higher frequency and shorter wavelength than
red. In the quantum theory, blue light consists of higher
energy quanta than the red.

The subject of light is so wide and its associations are
so numerous that it cannot be accommodated within
one article of reasonable length. There are three main
divisions of the subject of light: physical optics, physi-
ological optics, and optical instrumentation. This article
deals primarily with physical optics, treating the nature
and behaviour of light. It also discusses the interaction of
light with matter and descgbes such phenomena as lumi-
nescence in considerable detail. Although electromagnetic
theory is considered here, further elucidation may be ob-
tained in the article ELECTROMAGNETIC RADIATION. The
article SENSORY RECEPTION includes the physiological and
psychological aspects of light, while the section Optical
Engineering in the article opTics treats the theory and
technology of lenses, mirrors, and optical systems. The
experimental evidence that led to the quantum theory of
radiation is included in the present article along with a
brief statement of some of the basic ideas. The quantum
theory of radiation, however, is so closely associated with
‘he quantum theory of matter that the two must be con-
sidered together, as is done in the section on Quantum
mechanics of the MECHANICS article. (R.W.Di./Ed.)

The article is divided into the following sections:

General considerations 1
Historical survey |
Basic concepts of wave theory 3
Light spectrum 6
Velocity of light 7
Interference and diffraction phenomena 8
Interference 8
Diffraction 11
Polarization and electromagnetic theory 13
Polarized light 13
Electromagnetic-wave character of light 15
The interaction of light with matter 16
Reflection and refraction 16

Dispersion and scattering 17

Mechanical effects of light 18
Quantum theory of light 19

Photons 19

The wave-particle nature of light 21
Luminescence 22

Sources and process 22

Early investigations 22

Phosphorescence and fluorescence 23

Luminescence excitation 23

Luminescent materials and phosphor chemistry 24

Luminescence physics 25

General considerations

HISTORICAL SURVEY

From 500 BC to AD 1650. In this period, there were
innumerable confusions and false starts toward an under-
standing of light. Sometimes an idea was stated, though

not clearly, and then almost forgotten for centuries be-
fore it reappeared and was generally accepted. The uses
of plane and curved mirrors and of convex and concave
lenses were discovered independently in China and in
Greece. References to burning mirrors go back almost
to the start of history, and it is possible that Chinese
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and Greek knowledge were both derived from a common
source in Mesopotamia, India, or Egypt. The formula-
tion of general empirical laws and of speculation about
the theory of light derives mainly from Mediterranean
(Greek and Arab) sources. Pythagoras, Greek philosopher
and mathematician (6th century BC), suggested that light
consists of rays that, acting like feelers, travel in straight
lines from the eye to the object and that the sensation
of sight is obtained when these rays touch the object. In
this way, the more mysterious sense of sight is explained
in terms of the intuitively accepted sense of touch. It is
only necessary to reverse the direction of these rays to
obtain the basic scheme of modern geometrical optics.
The Greek mathematician Euclid (300 Bc), who accepted
the Pythagorean idea, knew that the angle of reflected
light rays from a mirror equals the angle of incident light
rays from the object to the mirror. The idea that light is
emitted by a source and reflected by an object and then
enters the eye to produce the sensation of sight was known
to Epicurus, another Greek philosopher of Samos (300
BC). The Pythagorean hypothesis was eventually aban-
doned and the concept of rays travelling from the object
to the eye was finally accepted about Ap 1000 under
the influence of an Arabian mathematician and physicist
named Alhazen.

Angles of incidence and of refraction—i.e., the change
in direction of a light ray going from one transparent
medium to another—were measured by an astronomer,
Ptolemy, in the Ist century in Alexandria. He correctly
deduced that the ray is bent toward the normal (i.e., the
direction perpendicular to a boundary plane, such as the
plane separating air and water) on entering the denser
medium. A Dutchman, Willebrord van Roijen Snell, dis-
covered the so-called sine law that gives the index of
refraction (a measure of the change in direction) for light
in a transparent medium. The laws of reflection and re-
fraction were brought together by a 17th-century French
mathematician, Pierre de Fermat, who postulated that the
rays of light take paths that require a minimum time. He
assumed that the velocity of light in a more dense medium
is less than that in a less dense one in the inverse ratio of
the indices of refraction.

The idea of rectilinear propagation of light—that is, that
it travels in a straight line—was applied in a practical sense
to drawing and painting long ago. Euclid was familiar
with the basic idea, but the main theory was developed by
Leonardo da Vinci, and a complete description of shad-
ows was given by the Danish astronomer Johannes Kepler
in 1604. Kepler also was the first to apply the laws of
rectilinear propagation to photometry (the measurement
of light intensities).

From 1650 to 1895. At the beginning of this period, the
result of the conflict between the corpuscular theory and
the wave theory was in doubt. At the end of the period,
the wave theory was generally accepted and seemed ca-
pable of explaining all known optical phenomena though,
with hindsight, it can now be seen that there were some
important difficulties.

Diffraction—i.e., the spreading of light into shadows—
was first observed in Italy in the 17th century. In England,
a worker, who independently noticed diffraction, also ob-
served the interference colours of thin films, which are
commonly seen today in an oil film on a wet road surface
or in the iridescent colours of a butterfly’s wing. He be-
lieved that light consists of vibrations propagated at great
speed. Christiaan Huygens, of Holland, greatly improved
the wave theory. In England, Sir Isaac Newton did not
attach much importance to the small amount of spreading
of light, and he knew that strictly rectilinear propagation
could not be reconciled with the wave theory. Polarization
phenomena (which can be accounted for by transverse
wave motion in a single plane) discovered in the 17th
century by a Danish physicist, Erasmus Bartholin, and by
Huygens were not consistent with the theory of longitudi-
nal waves (waves vibrating in the direction of propagation,
like compression waves in a coiled spring), which was the
only wave theory then considered. Newton therefore sup-
ported the corpuscular theory, although he did not reject
the wave theory completely. He accepted a concept of a

luminiferous ether, and he postulated that the particles
had “fits of easy reflection™ and “fits of easy transmission™;
i.e., he assumed that they changed regularly between (1) a
state in which they were reflected at a glass surface and (2)
a state in which they were transmitted. He thus introduced
periodicity—one of the basic ideas of wave theory—in a
form that anticipates the quantum mechanics. Newton,
using a glass wedge, or prism, discovered that white light
can be separated into light of different colours and took
the first steps toward a theory of colour vision.

In the century following his death the great authority of
Newton was quoted to uphold the corpuscular theory and
to oppose the wave theory in a way that he probably would
not have approved. It was not until the 19th century that
the work of Thomas Young of England; Augustin-Jean
Fresnel, Francois Arago, and Armand-Hippolyte-Louis
Fizeau, all of France; Irish scientist Humphrey Lloyd;
and German physicist Gustav Kirchhoff established the
transverse-wave concept of light; i.e., light is a wave vibra-
tion at right angles to the direction of travel. A universal
medium pervading all space and called the ether was sup-
posed to be some kind of elastic solid. This made it possi-
ble to accept the transmission of light through a vacuum,
but there was no completely satisfactory theory of the
ether or of the way in which light is modified by transpar-
ent materials like glass. The necessity for an elastic solid
disappeared when Maxwell proposed an electromagnetic
theory of light. He stated the laws of electromagnetism
in a clear mathematical form and generalized the concept
of an electric current. From his equations he predicted
the existence of transverse electromagnetic waves having
a constant speed ¢ in vacuo. The constant ¢ had a value of
300,000 kilomeues per second and was derived from mea-
surements on electrical circuits. It was known from the
work of Ole Remer, a Danish astronomer; Jean-Bernard-
Leon Foucault of France; and others that the velocity of
light was not much different from the velocity constant c.
A.A. Michelson, a physicist in the United States, measured
the velocity of light and Showed that it is equal to ¢ within
a small margin of experimental error. This result, together
with the work of a German physicist (Heinrich Rudolf
Hertz) on electromagnetic waves of larger wavelength,
confirmed Maxwell’s predictions (see ELECTROMAGNETIC
RADIATION). The existence of a connection between elec-
tromagnetism and light had, indeed, been demonstrated in
England much earlier in the century by Michael Faraday,
who observed the rotation of the plane of polarization of
a beam of light by a magnetic field (Faraday effect).

From 1900 to the present. Maxwell’s theory is a the-
ory of waves in a continuous (i.e., infinitely divisible)
medium. The energy of the waves is also infinitely divisi-
ble so that an indefinitely small amount can be emitted or
absorbed by matter. Classical physical theories of the 19th
century had predicted that in such a system the energy in
equilibrium would be distributed so as to give an equal
amount to each mode (frequency) of vibration. Because a
continuous medium has an infinite number of modes of
vibration, and the atoms (which constitute matter) have
only a finite number, all the energy of the universe would
be transformed into waves of high frequency. Maxwell
understood this difficulty, which was later most clearly
stated in the Rayleigh-Jeans law (after two English physi-
cists, Lord Rayleigh and Sir James Hopwood Jeans) of
the radiation of a blackbody (a body in which the intake
and output of energy are in equilibrium). The German
physicist Max Planck demonstrated that it is necessary
to postulate that radiant-heat energy is emitted only in
finite amounts, which are now called quanta. At first, it
was hoped to retain, without modification, the theory of
light as electromagnetic waves in free space and to use
the quantum concept only in relation to the interaction
between radiation and matter. In 1905, however, Einstein
showed that, in the photoelectric effect, light behaves as if
all the energy were concentrated in quanta—i.e., particles
of energy now called photons. In the same year, Einstein
published the theory of relativity, which modified the
whole of physics and gave a special role to the velocity
constant ¢. Because light, in some situations, behaves like
waves and, in others, like particles, it is necessary to have
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a theory that predicts when and to what extent each kind
of behaviour is manifested. The main development of the
quantum mechanics, which does precisely this, took place
between 1925 and 1935.

Light from ordinary sources is emitted by atoms the
phases of which are not correlated with one another, so
that there is a random irregularity or incoherence between
the waves emitted from different atoms. This places severe
restrictions on the conditions under which the periodicity
associated with wave theory can be observed. In England,
Lord Rayleigh appreciated this effect and knew that, by
the use of pinholes or slits and light of a narrow range of
wavelength, effectively coherent light could be produced.
For a long time, interest in this topic lapsed. About 1935
Frits Zernike, a Dutch physicist, and others extended the
theory of coherence to include the concept of partial co-
herence. This appeared to be of practical importance only
in a few rather special applications (e.g., in the Michelson
stellar interferometer; see below Interference). A theory of
stimulated emission, attributable to the work of Einstein
and an English physicist, Paul A.M. Dirac, postulated
that under certain conditions atoms could be made to
radiate in phase so that highly coherent radiation could
be maintained indefinitely. The practical realization of
these conditions, previously thought to be impossible, was
achieved in 1960.

A second major development in the theory of light in
this century is the application of so-called Fourier trans-
form methods (a mathematical treatment of light waves)
to a wide range of optical problems and, especially, to the
transfer of information in optical systems (see OPTICS).

Today, the theory of light has again reached a point at
which all known terrestrial phenomena are included in
one logical theory. The known unsolved problems con-
cern the transmission of light over the vast distances of
intergalactic space. Here the theory of light impinges on
the science of cosmology.

BASIC CONCEPTS OF WAVE THEORY

In this section on the wave theory of light, those prop-
erties of light that are consistent with a wave theory are
described using a minimum of mathematical formulation.
It is convenient to introduce the basic concepts of wave
theory in relation to mechanical systems. Below, in the
section on Interference, and beyond, it will be necessary
to consider results obtained by more sophisticated mathe-
matical methods, such as Fourier analysis.

General characteristics of waves. Periodicity in time
and space. If one end of a stretched rope is vibrated, a
wave will run along the rope. Figure 1 (top) represents a
profile of the wave—i.e., a “snapshot” of the displacement
of the rope from its normal position. It gives the variation
of this displacement (indicated by &) at different points
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Figure 1: Wave profiles.
(Top) Variation with position at one time. (Bottom) Variation
with time at one place (see text).

(z) along the axis of propagation for one specific instant
of time. Similarly, Figure | (bottom) shows the variation
with time of the displacement at one arbitrary point on
the axis. In Figure 1 (top) the distance between successive
crests is constant and is called the wavelength (4). Simi-
larly, the constant time between crests in Figure 1 (bottom)
is called the period (7). The temporal frequency (v, = 1/1)
is the number of vibrations per unit time and the spatial
frequency or wave number (v,= 1/4) is the number of
waves per unit length. The wave shown in Figure | (top)
may be represented by the cosine of an angle (¢) to give
the displacement for a particular point on the axis at any
instant of time:

&=A cos ®=A cos 2m (vt — v,z), (1)

in which ¢ is the displacement at any point z on the axis
at a time ¢, A is the amplitude (the maximum displace-
ment); the angle ¢ (phi) in this case is equal to 2n(v,t — v,z)
and is called the phase angle, or simply, the phase.

Energy. The energy per unit volume (W) stored in a
wave motion is proportional to the square of the ampli-
tude (A4) so that, with a suitable choice of units, W = 42

Phase velocity. Any one crest moves forward a distance
A in a time t; i.e., with a velocity b of the wavelength
divided by the period or the temporal frequency divided
by the spatial frequency,

(2)

The velocity b is called the phase velocity because the
phase angle ¢ will remain constant when the time ¢ changes
by an incremental amount ¢, and z changes by z,= by,
(This may be seen by substituting ¢ = ¢, and z = z, in the
expression for this phase and using b= v,/v,.)

The velocity of light in vacuum (denoted by c¢) is the
same for all frequencies; all colours travel through space
with the same speed. The phase velocity (denoted by b)
in a material medium, on the other hand, depends on the
medium and on the temporal frequency and, hence from
equation (2), on the wavelength.

Wave surfaces. Two-dimensional waves are formed by
vibrating (dipping) the end of a rod up and down in the
surface of a liquid. Waves spread from the point of origin
(where the rod contacts the surface) and, at any moment,
the phase at any point on a circle is the same; i.e., if, at
a given moment, the wave is at a maximum at one point
on a circle then it is at a maximum everywhere on this
circle, and the circle as a whole is a wave crest. Similarly,
a trough is found at all points on another circle (the radius
of which is 1/2 greater than that of the first circle). As the
waves progress farther and farther from the origin, they
become less strongly curved about the origin so that, at
great distances, they are approximately plane waves.

Light waves are propagated in three dimensions and, for
waves from a point source in an isotropic medium (i.e.,
one in which the speed is the same along any radius),
the phase is constant over spherical surfaces drawn about
the point source as a centre. The surfaces of constant
phase are called wave surfaces, and waves are called plane,
spherical, ellipsoidal, and so on according to the shapes of
the wave surfaces.

Reflection and refraction. The similarity between the
behaviour of light waves and the surface waves of a liquid
may be demonstrated with the so-called ripple tank. For
reflection of a train of surface waves incident on a flat
object, it may be readily observed that the angle of reflec-
tion is equal to the angle of incidence. For waves that are
refracted in passing from one medium of the ripple tank
in which the phase velocity is b,, to another in which the
phase velocity is b,, measurements of angles of incidence
(6,) and refraction (6,) of the surface waves verify Snell’s
sine law of refraction; i.e., that the ratio of the sines of the
angle of incidence and refraction is a constant, or

sin 0, b,
«nfg_p N
sin 6, b,
in which the constant #,, is called the index of refraction
from medium 1 to medium 2. The index of refraction (n)
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from vacuum to a material medium is called the index
of the medium and, for transparent mediums is always
greater than unity (one). When n,, is less than unity, as
happens when light is refracted as it passes from glass
into air, the refracted ray grazes the surface if sin 6, = n,,,
0, being the angle of incidence in the glass. At angles
of incidence greater than this critical angle there is total
reflection; i.e., light, instead of penetrating into the air, is
reflected back into the glass.

Dispersion. Newton found that, when a beam of white
light is refracted by a glass prism, it is dispersed, or split,
into beams of different colours. This phenomenon is now
interpreted in the following way: the velocity of light in
glass varies fairly rapidly with its wavelength, whereas its
velocity in air varies little; thus the index of refraction and
hence the angle of refraction depend on wavelength. A
beam of white light, containing as it does a wide range of
wavelengths, is thus dispersed by a glass prism so that light
of one wavelength emerges from it in a different direction
from light of another wavelength. Because colour depends
on wavelength, the emergent light forms a spectrum (see
Plate). All material mediums are, to some extent, dis-
persive (i.e., phase velocity varies with the temporal or
spatial frequency).

Wave groups. When a stone is dropped into a quies-
cent pond, a few waves may be seen travelling out from
the point of impact. This group of waves maintains its
identity as it is propagated over a considerable distance,
although it finally dies away. The velocity of the group
as a whole is called the group velocity. Careful observa-
tion shows that the group velocity is less than the phase
velocity. Individual waves may be seen to appear at the
back of the group, advance through it, and die out as they
reach the front of the group. In a nondispersive medium
the group velocity is equal to the phase velocity, while in
a dispersive medium it may be greater than, less than, or
equal. For light waves, the group velocity is almost always
less than the phase velocity.

Interference. When two or more wave motions are pres-
ent at the same place and time, the simplest assumption
is that the resultant displacement (&) is the algebraic sum
of the individual displacements (&, &, &, etc.), i.e.,

R=&+ G+ 4L+ - - -+ N (4)

Nearly all observations on light are in accord with this
equation, which is a statement of the principle of su-
perposition. These phenomena constitute the subject of
what is known as linear optics. The possibility that ad-
ditional phenomena might be observed at high intensities
of light has long been accepted, and the use of lasers in
the attainment of the necessary high intensities has led
to the discovery of frequency doubling and other effects
that cannot be predicted from equation (4). These new
observations constitute the material of nonlinear optics
(see opTICS). Equation (4) is valid for all the phenomena
of interference, diffraction, etc., which will be described
in this article.

Two waves are said to be coherent if their phase dif-
ference remains constant during a period of observation.
Figure 2 shows two equal coherent plane waves travelling

Figure 2: Interference of two plane waves AB and CD with
directions inclined at an angle a. The crests of CD are
represented as C,D,, C,D,, etc., and the troughs are shown as
broken lines (see text).

across the same space, with the wave fronts inclined at a
small angle a, AB representing a surface corresponding to
a crest of one wave. (The surface must be assumed to be
perpendicular to the page.) C, D,, C, D,, etc., represent
surfaces that correspond to crests of the other wave. The

" intermediate dotted lines represent troughs. At points such

as P, (and P,, P;,...), a crest of one wave coincides with
a crest of the other and according to the principle of su-
perposition the displacement is twice that of either wave
alone. At points Q,, Q,, etc., a crest of one wave meets a
trough of another; so the displacements being equal and
opposite, the resultant is zero. Thus, an observer looking
at a plane that is perpendicular to the page and passes
through AB sees a series of straight lines through P,, P,, P;,
etc., representing large displacement and a series of lines
through Q,, Q,, O, etc., representing zero displacement.

There are many ways in which coherent beams of light
can be made to cross at an angle of about one part in a
thousand. The eye (or a low-power magnifier) can be fo-
cussed on a plane such as that through 4B. The resulting
parallel light and dark lines are called interference fringes
(Figure 3). From Figure 2 it may be seen that the separa-
tion (d ) of two bright fringes is A/a or 1,000 A if a= 0.001.
When a has this value, d = 0.5 millimetre for blue-green

Milward T Rodine

Figure 3: Two-beam interference fringes from
Young's double slits or Fresnel's biprism
(see text).

light and this would imply that A is about 0.5 X 0.001 or

1/2,000 part of a millimetre (this is usually written 500
nanometres).

In this experiment the spatial periodicity of the light
waves (about 2,000 waves per millimetre) has been made
to produce fringes with periodicity of about two per mil-
limetre. The spatial periodicity of a light wave is too high
for the human eye, and it cannot be magnified directly.
Interference methods effectively magnify it so that the
resultant fringes can be seen by eye or with a conve-
nient magnification. The following method of producing
interference fringes, developed by Thomas Young, is now
called Young’s experiment.

In the arrangement shown in Figure 4, light of one wave-
length passes through a slit S producing semicylindrical
waves that are intercepted by two other slits P, and P,.
The two slits P, and P, act as secondary sources of coher-
ent, semicylindrical waves the combined effect of which
is observed on the plane perpendicular to the page and
designated 4B. In a typical case the separation (a) of P,
and P, is a millimetre and the distances /, and /, are each
about a metre. The slits are a centimetre or so long but
are much less than a millimetre wide. They are accurately
parallel to one another and, as represented in the drawing,
are at right angles to the page. Because the waves from P,
and P, are indirectly derived from the same small source,
they are coherent. When they cross plane AB they are
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Figure 4: Young's experiment (see text).

nearly plane because of the large radius, and they intersect
at an angle a equal to 0.001. It may be shown that the
intensity (/) for these fringes varies from point to point
along the line 4B in the way shown in Figure 5 (curve A),
which is in accord with the equation

I=2A4%(1+cos¢e)=2[(1 +cose), (5)

in which A4 is the amplitude of either wave, I, is the in-
tensity of one wave acting alone and the phase difference
&= 2nya/Al,. Bright fringes are seen in positions for which
&= 2np or y= pA/ha (in this case p is a whole number,
which may be positive, zero or negative—0, +1, +2, +3,
etc.). Because cos ¢ varies from —1 to +1, / varies from
41, to zero. The average, in accordance with the law of
conservation of energy, is 2/.

1.0

0.5—

intensity (I)

0-

Figure 5: Interference fringes obtained in Young's experiment
(see text).

Diffraction. Plane waves that pass through a restricted
opening emerge as divergent waves. When the opening is
less than one wavelength in diameter the emergent wave
is nearly spherical. Whenever a beam of light is restricted
by holes or slits or by opaque obstacles that block out part
of the wave front, some spreading occurs at the edges of
geometrical shadows. This effect, called diffraction, is also
obtained with transparent obstacles that cause an irregu-
larity in the wave front. Diffraction can be demonstrated
by allowing a parallel beam of light to fall on a grating
consisting of an array of equally spaced narrow slits. If the
extent of physical separation of two adjacent slits is ¢, then
the path difference between any two adjacent rays emitted
in a direction symbolized by 6 is e sin 6, and if this path
difference is an integral number (p) of wavelengths,

esin 6= p\, or v, sin 0= pg, (6)

in which v, is the spatial frequency (1/4) and g is the
number of lines per unit width of the grating, then the
waves from different slits have phases that differ by angles
of 2pn, and they reinforce one another. Thus, when lenses
are employed with a grating, sharp lines are obtained for
each wavelength at values of 6 corresponding to integral
values of p. If white light is used, each line is drawn out
into a spectrum of wavelengths because the direction of
reinforcement depends on the wavelength.

Polarization. In the propagation of waves on a rope or
across the surface of a liquid the displacement (as shown
in Figure 1) is in a direction perpendicular to the direction
of propagation and the waves are said to be transverse.
Sound waves in a gas consist of alternate dilation and
compression and the displacement is in the direction of

propagation. The waves are longitudinal. If a beam of
longitudinal waves is propagated in a vertical direction,
there is nothing to distinguish one azimuthal plane from
another—everything that is true for an east-west plane
is equally true for a north-south plane. With transverse
waves the displacement may be in the east-west plane; in
that case, there is no component in the north-south plane,
and this should manifest itself in the form of a property
that depends on the azimuth. Such an effect is called an
azimuthal property. An ordinary beam of light from a
thermal source does not exhibit any azimuthal property,
but experiments show that light can have an azimuthal
property and must be represented by transverse waves.

If an unsilvered glass plate has an index of refraction
equal to 1.5 and the angle of incidence of a beam of light
is 57°, about 15 percent of the light will be reflected from
the two glass surfaces of the plate (Figure 6); this per-
centage will not be altered when the glass plate is rotated
about an axis parallel to the beam of light so as to change
the azimuth of the plane of reflection. If a second mirror
(G,), parallel to the first (G)), is used to reflect the beam in
the same plane as that of the original reflection, about 30
percent of the light incident on the second plate of glass
will be reflected; but if the second plate is turned so as
to reflect the light in a plane perpendicular to that of the
first reflection—i.e., out of the plane of the page—hardly
any light will be reflected. Thus, after the first reflection,
the beam of light will have acquired an azimuthal prop-
erty—it will be reflected more strongly when the trans-
verse displacement is in one azimuthal plane than when
in another. Further tests will show that the transmitted
light has a complementary azimuthal property; it is more
strongly reflected in the perpendicular plane—though the
difference is less marked.

These results may be understood if ordinary light consists
of a mixture of transverse waves with displacements in
all azimuthal planes but only one component is reflected
from a glass surface when the angle of incidence is 57°.
The reflected light is said to be plane-polarized because all
of the displacement of the wave is in one azimuthal plane.
The transmitted light (about 85 percent of the whole)
contains about 50 parts of a component that is polarized
in a perpendicular plane and about 35 parts of light that is
polarized in the same way as the reflected light. It is more
strongly reflected in the plane of the page, but because it
is only partially polarized, the azimuthal effect is less.

From RW Ditchburn, Light (1963). Interscience Publishing, Inc.,
by permission of John Wiley & Sons, Inc

Figure 6: Malus' experiment.
Successive reflections at two unsilvered mirror
surfaces, G, and G, (see text).

The above experiments do not show whether or not the
reflected light has its displacement in the plane of reflec-
tion or perpendicular to it. It is a matter of choice whether
the reflected light is said to be polarized in or perpendicu-
lar to the plane of reflection. Some controversy (and some
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difference of nomenclature) that formerly led to confusion
was removed by the electromagnetic theory (see below). In
this theory light is represented by two vectors (quantities
that can be represented graphically by arrows that point
in the field directions), a magnetic vector in the plane of
reflection and an electric vector perpendicular to it. Con-
fusion is avoided by specifying the plane of the electric
vector instead of speaking of the plane of polarization.

The azimuthal property of reflected light at the surface
of any medium—glass, plastic, a liquid—is most strongly
manifested when the angle of incidence is so chosen that
its tangent is equal to the index of refraction; that is, it
satisfies Brewster’s law (after Sir David Brewster, a British
physicist), which states that, at the polarizing angle, the
incident and refracted beams make an angle of 90° with
one another: tan 6,= n, in which 6, is the angle of in-
cidence, called the polarizing angle, and #n is the index
of refraction of the medium. Nevertheless, there is some
azimuthal difference after reflection at any angle except
6, =0 or 6, = 90°. Other ways of producing polarized light
are described in a later section.

It is found that the plane of polarization of a beam of
polarized light is rotated when the beam is passed through
certain mediums (especially sugar solutions). These medi-
ums are said to be optically active. Most mediums do not
normally rotate the plane of polarization, but do so when
there is a magnetic field in the direction of propagation
(the Faraday effect).

The wave equation. The expression for a plane wave,
given in equation (1) and showing the relationship be-
tween displacement (¢ ), the time span (¢), and distance (z)
along the wave, may be differentiated twice with respect to
t and z, that is, to find out how the displacement changes
with position and time. This operation yields the partial
differential equation:

, (72)

in which b is the phase velocity. For a three-dimensional
wave the analogous expression is
il & 3 1 3
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There are many solutions of this basic equation. Some
correspond to the sinusoidal plane waves, which have
already been considered. Others correspond to groups of
plane waves that differ slightly either in direction, or wave-
length, or both. Yet another solution of the general wave
equation is:

A
&= —cos 2n(vi — v,r), (8)
>

in which r is the magnitude of a radius vector drawn from
the origin and A is a constant. This represents spherical
waves.

Energy of a beam of light. The energy in a small
volume (dV'), through which plane waves are passing, is
proportional to the product of the square of the amplitude
(A), or its energy per unit volume (W), and the small vol-
ume; that is, 42°dV = WdV. The rate of transport of energy
across a surface normal to the direction of propagation is
proportional to the product of the energy per unit volume,
the phase velocity, and a small area (dS) normal to the
direction of propagation, or WhdS. For spherical waves,
the rate of transport is inversely proportional to 72, i.e., (4/
r?)dS. Because the area of a sphere is 4772 in which r is its
radius, this equation implies that the total energy crossing
any sphere surrounding a point source is independent of
the radius. Thus, inverse-square law for the intensity of
radiation at a distance r from a point source is in accord
with the law of conservation of energy—the total energy of
a wave remains the same even though the wave is spread
over a greater area.

Doppler-Fizeau effect. The length of a wave train emit-
ted in one second by a stationary light source is equal
to the velocity of light (¢) times one second, which in

itself is equal to the product of its frequency (v,) times
its wavelength (1)—i.e., ¢ = v,A. If the source moves away
from the observer with a velocity (v) that is small com-
pared with the velocity of light, then the length of the
wave train increases so as to be numerically equal to the
sum of the two velocities (¢ + v) and the number of waves
remains the same. The wavelength A increases to A’ by
a factor (¢ + v)/c; that is A’ = (1 + v/c)A. This change was
discovered by an Austrian physicist, Christian Doppler, in
the 19th century in relation to sound waves and subse-
quently applied to light waves by Fizeau. It is called the
Doppler-Fizeau effect. The Doppler-Fizeau effect is easily
observed when part of the light from a gas laser is allowed
to be scattered by a moving body and mixed with a little
unscattered light. It is known from the study of sound
waves that the beat frequency is equal to the difference
between the frequencies of the two waves that are mixed.
Although the frequency of light waves is extremely high
(more than 10" per second), the beat frequency may be
a megahertz (10° cycles per second), which is easily de-
tected by radio amplifiers, or even a few hundred cycles
per second, which the human ear can detect. Thus, just
as interference fringes provide a periodic phenomenon in
which two light waves combine to produce fringes of low
spatial frequency, so the Doppler-Fizeau effect produces
beats the temporal frequency of which is a known, but
very small, fraction of the temporal frequency of the light
waves. In this way the periodicity of light in both space
and time is exhibited and measured.

LIGHT SPECTRUM

It was seen, in the preceding section, that white light can
be dispersed into a spectrum by refraction, by diffraction,
or by interference. Newton showed that if a suitably ori-
ented slit is used to select a small region of the spectrum,
the light that passes through the slit is much more homo-
geneous than the original white light, and he was unable
to observe any further dispersion when passing this light
through a second prism. Delicate methods of interferom-
etry nevertheless show that this light is never entirely of
one wavelength, however fine the slit, but covers a range
(42) of wavelengths. The ratio of the wavelength divided
by this range, which measures the purity of the spectrum,
may be a few thousand for a spectrum formed by a prism
and up to a million for a spectrum formed by a large
diffraction grating. It is never infinite, as it would be if
AL were zero.

The spectrum of a hot body such as the solar photo-
sphere is continuous (every wavelength is represented); but
a German physicist, Joseph von Fraunhofer, early in the
19th century observed that the solar spectrum contains
numerous dark lines appearing at certain wavelengths,
which are attributed to wavelengths originally emitted by
inner layers of the Sun but then absorbed by various
elements (in gaseous form) in the cooler outer layers (see
Plate). Emission spectra produced by electric sparks and
arcs contain sharp bright lines which are characteristic of
the elements in the electrodes.

In monochromatic light, colour and wavelength are as-
sociated. Nevertheless, as Newton said, “the rays, to speak
properly, are not coloured.” Colour is a sensation in the
human mind. Light of one wavelength can stimulate the
visual system so that a certain colour sensation (e.g., red)
is produced. The way in which the visual system analyzes
colour is entirely different from the way in which physical
instruments form a spectrum (see SENSORY RECEPTION).

There are a number of ways in which spectra are pro-
duced in nature. The rainbow is the most striking of these.
The primary rainbow is formed by reflection and refrac-
tion of light in raindrops. The rays emerging from the
drops are spread out, but for any given wavelength there
is a minimum angle of deviation and there is a concentra-
tion of energy at this angle. For green light the minimum
angle of deviation is about 138° and an observer with his
back to the Sun sees the bow at an angle of 42° to the
direction of the Sun’s rays. Because of the dispersion of
water, the angles for different wavelengths are not exactly
the same, and the red is seen on the outside and blue on
the inside of the bow. A weaker rainbow is formed by
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rays that have been twice reflected. In this the colours are
reversed. Still weaker supernumerary bows are caused by
diffraction in droplets. A rainbow may be regarded as a
spectrum of the Sun, but the purity is low.

VELOCITY OF LIGHT

The accepted value of the velocity of light (¢) in vacuum
is 299,792.458 kilometres per second (see Table 1). The
velocity is the same for all wavelengths over the whole
range of the electromagnetic spectrum from radio waves
to gamma rays. Methods of measurement are of three
types: (1) measurement of the time (7°) in which a group
of waves covers a known distance (/ ), (2) measurement of
the frequency (v,) and wavelength (1) of monochromatic
waves, and (3) indirect methods, such as measurement of
the change of frequency or wavelength (Doppler-Fizeau
effect) when a beam of light is reflected from a mirror
moving with a known velocity.

Table 1: The Constant ¢
(in kilometres per second)
year value

Derived from measurements

of the velocity of light
Michelson 1927 299,796 + 4
Michelson, Pearson and Pease 1935 299,774 = 11
Value accepted in 1941 1941 299,773 £ 3
Bergstrand 1951 299,793.1 £ 0.2
Bergstrand (mean value) 1957 299,792.9 + 0.2
Value adopted by 17th General 1983 299,792.458

Congress on Weights

and Measures
Derived from measurements

on radio waves
Essen (104 MHz) 1950 2997925+ 1
Froome (2.4 and 7.5 X 10¢ MHz) 1951-58 299,792.5 + 0.1
Value adopted by 12th General 1957 299.792.5 + 0.4

Assembly of the Radio-

Scientific Union
Derived from electrical

measurements
Rosa and Dorsey (ratio of units) 1907 299,788 + 30
Mercier (Lecher wires) 1923 299,795 + 30

Methods of type (3) have, so far, given an accuracy of
only a few percent. Methods of type (2) cannot be used for
light waves because the frequency is about 1.5 X 10'* hertz
and is too high to be measured directly. The remainder
of this section will review measurements of the velocity of
light by methods of type (1) and compare the results of
the best measurements with the results obtained for radio
waves by methods (1) and (2).

Astronomical measurements. In 1676 Remer made
careful measurements of the times at which satellites of
Jupiter were eclipsed by the planet. The times observed
did not agree with those calculated on the assumptions
of a constant period of rotation and of instantaneous
transmission of light. Starting at a time when the Earth
was at its nearest to Jupiter, the apparent period increased
and the eclipses became increasingly later than the calcu-
lated times as the Earth receded from Jupiter. Similarly,
the period shortened when the Earth was moving toward
Jupiter. The observed times were consistent with a finite
velocity of light such that the time for it to transverse the
Earth’s orbit is about 1,000 seconds. Taken with modern
values of the size of the Earth’s orbit, the derived value
of the velocity is 298,000 kilometres per second. It is
remarkable that this first measurement was even of the
correct order; the most important conclusion was that the
velocity of light is finite. An English astronomer, James
Bradley (died 1762), obtained a similar value by the so-
called aberration method, based on the apparent motion
of stars as the Earth travels in its orbit about the Sun.

Early terrestrial experiments. In terrestrial experiments
by method (1), the beam of light is periodically marked ei-
ther by interrupting it at regular intervals or by modulating
it (alternately increasing and decreasing its intensity). The
marked beam is transmitted to a distant mirror and the
return beam passes through the apparatus that interrupts
or modulates the outgoing beam and then to a detector.
If the time required for transmission to the distant mirror
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Figure 7: Fizeau's method for measuring the velocity of light.
From RW. Ditchburn, Light (1963), Interscience Publishing. Inc
by permission of John Wiley & Sons. Inc
and return is '/2. %2, %>, ... times the period of the inter-

rupter (or modulator), then the amount that reaches the
detector is small. It is usual to adjust either the path length
or the period of the interrupter or modulator until the light
registered by the detector is a minimum. In the earlier ex-
periments, a mechanical chopper was used as interrupter,
and the eye was the detector. Later experimenters used
electronic modulators and photoelectric detectors.

The apparatus used by Fizeau in 1849 is shown in Figure
7, in which M, is a partially reflecting mirror and M, is
a fully silvered mirror. As the speed of the wheel (which
has 720 teeth) was increased from zero, it was found that
the light was first eclipsed by a tooth when the speed was
about 12.6 revolutions per second—i.e., when the time to
make the round trip was 560 microseconds (0.00056 sec-
ond), the length of the double path being 17.3 kilometres
(about 10 miles). The chief error in the measurement lay
in the difficulty of determining the exact speeds at which
the light received by the eye at £ was at a minimum.
Essentially the same method was used by others between
1874 and 1903. The accuracy gradually improved, and
it was shown that the velocity is between 299,000 and
301,000 kilometres per second.

In 1834 Sir Charles Wheatstone of England suggested a
method incorporating a rotating mirror for interrupting
the light that was later developed by Arago (1838) and
Foucault (1850). It was considerably improved by Michel-
son, who made measurements from 1879 to 1935.

Michelson’s measurements. Figure 8 shows the arrange-
ment used in 1927. The mirror M; is a little above the
plane of the diagram, and M}’ is a little below. Light from
the source S passes to one face of the octagonal mirror
M, and then to M,, M,, and M,. From M, it goes to the
mirror M; at a distance of about 35 kilometres (about 22
miles). It returns via M, M,, M/, and M’ to the octagon.
An image of S is seen in an eyepiece at E. The octagonal
mirror rotated at 528 revolutions per second. It turned
through approximately one-eighth of a revolution during
the transit of the light. If the rotation were exactly one-
eighth of a revolution, the image would be undisplaced
from the position it had when the mirrors were stationary.
In some of Michelson’s experiments, the speed of rotation
was slowly changed until this condition was obtained. In
others, the speed and distance were fixed, and a small
displacement of the image was measured.

It is difficult to estimate the accuracy of Michelson’s
1927 and 1935 experiments, and it is no longer important
to do so in view of the more accurate measurements made
since 1945. His most important contribution to the mea-
surement of the velocity was the proof that the velocity
agreed with Maxwell’s prediction to better than one part
in a thousand. This gave confidence to those working on
applications of the electromagnetic theory.

From R.W. Ditchburn, Light (1963). Interscience
Publishing, Inc., by permission of John Wiley & Sons, Inc.
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Figure 8: Michelson’s Mount Wilson experiment, 1927.
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The electro-optical shutter. This device, based on the
Kerr effect (see below), makes it possible to modulate
a beam of light at frequencies more than 10,000 times
the highest frequency of interruption used by Michelson
and obtain values in reasonably good agreement with
each other and with Michelson’s later work. This method
was greatly improved by E. Bergstrand in Sweden, who
reduced the random errors by a factor of more than 30
and obtained a value for the velocity of light of 299,793.1
kilometres per second.

Radio-frequency measurements. The velocity of elec-
tromagnetic waves of radio frequency in vacuum has
been measured by several methods. An English physicist,
Louis Essen, measured (1950) the resonance frequency of
a cavity resonator (an electromagnetic device) whose di-
mensions were also determined with high accuracy. Keith
Davy Froome, a physicist in England, measured (1952 and
1958) the wavelength in air, corresponding to a known
frequency, using a microwave interferometer. The results
of these and other measurements are in agreement with
those of Bergstrand to within a few parts per million.
The velocity of radio waves in vacuum is thus equal,
within this accuracy, to the velocity of light. The velocity
of gamma rays is also the same, within the much lower
accuracy of this last measurement. Table 1 summarizes
the measurements of the velocity constant (¢) and shows
that there is now satisfactory agreement between results
obtained over a wide range of conditions.

Since the publication of the special theory of relativity
(1905), the constant ¢ has been recognized as one of the
fundamental constants of modern physics. For this reason,
attempts will undoubtedly be made to measure it with
even greater precision. The use of lasers may help, but a
major improvement will require the establishment of bet-
ter standards of length and time than those now available.

Velocity in material mediums. All measurements of the
velocity of light involve interruption or modulation of a
beam of light so as to form groups of waves and the
velocity measured is the group velocity. The difference
in magnitude between the wave velocity and the group
velocity of light in air is only about one part in 50,000,
but in most glasses and in some Jliquids it is much larger.
Michelson obtained 1.758 for the ratio of the velocity in
air to the velocity in carbon disulfide. The inverse ratio of
their indices of refraction is 1.64 and the value calculated
from this for the ratio of group velocities is 1.745 for
wavelength 580 nanometres, close to Michelson’s obser-
vations. Bergstrand found that the ratio of the velocity in
vacuo to the velocity in a certain glass was 1.550 £ 0.003.
The refractive index of the glass was 1.519, but the ratio
of ¢ to the group velocity was 1.547. The experimental
results thus agree with those calculated on the assumption
that the measured velocity is the group velocity.

Interference and diffraction phenomena

INTERFERENCE

Quasi-monochromatic waves. A perfectly monochro-
matic wave, represented by equation (1), has constant am-
plitude and is not limited in space or in time. Sources of
light (other than lasers) emit waves the amplitude of which
varies with time. For example, a single undisturbed atom
emits a damped wave (Figure 14A). Under favourable
conditions the damping is so weak that 107 waves are
emitted before the amplitude has fallen to half its initial
value and the change of amplitude is not significant over
a distance of several thousand wavelengths. Wave trains
of this type are said to be quasi-monochromatic. Super-
position of these waves gives interference when the path
difference is not too large.

Photometric summation. Figure 5, curve A, shows the
way in which the intensity of light varies from place to
place when two monochromatic or quasi-monochromatic
waves overlap. The intensity at a point in the region
where the waves overlap may be expressed as the sum of
two terms: (1) the sum. of the intensities of each wave
acting alone (2/, if each alone would give intensity 1,);
(2) a term representing the interference of the waves. The
second term varies from point to point along the direction

of propagation between the values —2I, and +2/,. Thus
the total intensity varies from 4/, (i.e., twice the inten-
sity sum) to zero. Now, when a large number of waves
from different sources cross a certain space, the fringes
caused by the interference of each pair of waves have
their maxima in different places and the overall result
is that, at any point, the interference terms are positive
nearly as often as they are negative and their total sum
is nearly zero. In this case the resultant intensity at any
point caused by a number of sources is just equal to the
sum of the intensities (at that point) of each source acting
alone. This is the law of photometric summation and is
used by illumination engineers in calculating the illumina-
tion on a surface that receives light from various sources.
Interference fringes are obtained only when experimental
conditions are such that the interference fringes caused by
light emitted from different atoms all have their maxima
in the same places (or near to the same places). The
interference term then becomes a significant fraction of
the summation term. This may be achieved either (1) by
using two secondary sources (such as the two slits used in
Young’s interference experiment), which are both derived
from the same primary source, or (2) by using a laser in
which the source atoms are stimulated in such a way that
the phase relations between them remain constant during
the period of observation.

Visibility of interference fringes. The distribution of
intensity in interference fringes, shown in Figure 5, curve
A, represents an ideal that is closely approached in some
experiments, but generally the distribution is such that
the fluctuations that constitute the fringes are superposed
upon a nearly uniform background. Michelson defined
the visibility of fringes as the difference between the max-
imum and minimum intensity of a fringe divided by
their sum, or
S - ©)
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in which V is the visibility, /., is the maximum intensity,
and /., is the minimum. The fringe visibility is thus
always between zero and one. When the minimum inten-
sity is zero, the visibility equals one. Obviously, fringes
for which V is less than one are obtained when waves
of unequal amplitude are superposed because the weaker
cannot, at any point, annul the stronger. It is also found,
however, that even when the intensities are equal, the vis-
ibility is usually less than one (as shown in Figure 5, curve
B). Further consideration of Young’s slit experiment leads
to recognition of two conditions that must be fulfilled
to obtain fringes of high visibility. These relate to their
geometrical condition and spectral range.

Geometrical conditions. In the arrangement shown in
Figure 4, the centre of the fringe system is at a position
O on the screen, on the straight line from the source slit
S to a position midway between P, and P, (the slits are
all assumed to be extremely narrow). If slit S is moved
to S’ then the centre moves to O'. If, instead of moving
the slit S to this new position, it is gradually widened, the
intensity at any point Q is found by adding the intensities
of waves emitted by atoms behind different parts of the
slit. Because the fringes on plane O’ OQ produced by light
from different parts of slit S are not in register, there
cannot be zero intensity at any point in the pattern. As
slit S is widened the fringes gradually become blurred—
i.e., the visibility falls from unity to zero. If /, =/, no
fringes are seen when the width of slit .S is about equal to
the distance (d)) between successive fringes.

Spectral range. In the case in which the slit S is ex-
tremely narrow and the light is not all of exactly one
wavelength, the path difference and the phase difference
will be zero at the centre of the fringe system for all
wavelengths, so that for all wavelengths there is maximum
intensity at the centre O of the fringe system. Because the
separation of the fringes is proportional to the wavelength,
the fringes produced by light of different wavelengths grad-
ually go out of register as the path difference is increased.
With white light, one clear fringe is seen in the centre. A
few coloured fringes are seen on either side because the
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eye makes a certain degree of separation of the colours.
If a filter is used to restrict the light to a band of say 50
nanometres wide, then about ten fringes may be seen on
either side, and this number is increased if the wavelength
range 1s further restricted.

These two causes of reduced visibility differ in that the
geometrical condition affects all parts of the fringe system
equally and the effect of the spectral range increases as the
path difference increases. In discussing these phenomena
it has been assumed, in accordance with the preceding
discussion, that the intensity of light from different atoms
obeys the law of photometric summation. It is also as-
sumed that the photometric law applies when different
wavelengths are superposed.

Coherence. When two beams of light can interact so
as to produce interference fringes the visibility of which
is unity, they are said to be perfectly coherent. When
their interaction produces no fringes (but only photomet-
ric summation) they are said to be noncoherent or in-
coherent. An elaborate mathematical theory of coherence
recognizes that coherence and noncoherence are extreme
cases—between them lies “partial coherence.” Zernike,
who contributed a great deal to the development of the
subject, defined the degree of coherence y,, of two sources
as equal to the visibility of the fringes obtained in the most
favourable circumstances using light from these sources. It
has been shown that the visibility of the fringes obtained
in Young’s experiment depends on the width of the slit S|,
and the following mathematical relation has been derived:

__sin (Znad/l_,)

- 10
2nad]l, (10

)
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in which d is the width of the slit S, (Figure 4). If d is
gradually increased from zero, y,, falls from one (for d
equal to zero) to zero for d =/,a/A, a value equal to the
separation of the fringes when /, = /,. When the width d
is further increased, fringes are again seen but they are of
low visibility and are reversed (i.e., there is now a dark
fringe in the centre).

For the case of a slit source being inaccessible for mea-
surement, its angular width (d//,) can be determined by
measuring the visibility of the fringes while a, the sepa-
ration between P, and P,, is varied. Michelson used this
method to obtain the angular diameter d of a star (serving
as the slit source) from measurements of the visibility of
interference fringes formed in the focal plane of a tele-
scope that receives light from two small mirrors mounted
in front of the telescope’s objective, separated from each
other by a distance a.

The concept of coherence that has been applied to light
from two pinholes may be extended to a beam of light
considered as a whole. A roughly parallel beam of light
is incident on a thin sheet of metal normal to the di-
rection of propagation. Then two pinholes may be made
in the sheet at 4 and B (Figure 9) and the visibility of
the resulting fringes measured so as to obtain the mutual
coherence y,,. If 4 and B are initially coincident and
are slowly separated then y,, falls gradually from one to
zero. It is possible to define a region of coherence around
any point A such that if point B lies within this region
the coherence is good (y.,> 0.7). Similarly, by devices
such as that described in the next section it is possible to
measure the mutual coherence between 4 and a point 4’
that is, as it were, downstream from 4 and to define a
“coherence length™ / such that coherence is good when
AA’ <1. When, (1) the region of coherence extends across
the whole beam of light, and (2) the coherence length is
large, the beam is said to be highly coherent because the
mutual coherence between any two points such as B and
A’ i1s high. What qualifies as a “large coherence length™
depends on the type of source and the conditions of the
experiment; ten centimetres is a large coherence length for
the kind of source considered in the next section, but a
well-stabilized gas laser may give a beam with a coherence
length of many metres.

In the wave equation for light already cited, the displace-
ment and phase angle, represented by the variables & and
o, were used to specify a wave motion, but, for light, these

Figure 9: Two pinholes in an opaque sheet to illustrate

mutual coherence between points A, A’, and B.

quantities are not observable nor can they be inferred
from any observations—because of the high frequency of
the wave motion. The coherence y,, and the phase differ-
ence, however, are observable quantities that characterize
sources and beams of light. This makes them important
both in theory and in practice.

Two-beam interference. In the Michelson interferome-
ter, shown in Figure 10, the incident wave W is divided at
the beam splitter BS so that part of the light is transmitted
and part is reflected. After reflection at M, and M, the two
parts form the wave fronts W, and W,. These are copies
of W, and, because corresponding points are superposed,
coherence is obtained even with an extended source. The
light from source S, selected by the filter at FF, is quasi-
monochromatic. The plane R represents the image of M,
that would be seen by reflection in BS. The phase dif-
ferences between W, and W, are the same as if W, had
been reflected from R, which is called the reference plane.
M, may be traversed normal to itself and may also be
tilted with respect to the reference plane. A compensating
glass plate C' having the same thickness as BS is used so
that both wave fronts will pass through a total of three
thicknesses of glass.

Fringes will be formed when M, is adjusted to be exactly
parallel to R and separated from R by a small distance e.
For a hollow cone of rays, each ray will be incident on M,
and on R at an angle 0. After passing through the instru-
ment on their return trip, these rays will be focussed into
a circular ring in focal plane FF’ of the lens L. At each
point on this ring two waves will be superposed and their
path difference will be 2¢ cos €. Bright rings are obtained
for values of € such that 2¢ cos &= pA, in which p is an

From RW Ditchburn, Light (1963). Interscience Publishing, Inc
by permission of John Wiley & Sons. Inc
| — :
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Figure 10: The Michelson interferometer.

integer. The appearance of these fringes is similar to that
of Newton’s rings (see Plate).

These fringes are known as fringes of equal inclination
because any one ring corresponds to a set of rays that all
have the same inclination, 6, to the mirror M,. They are
conveniently observed by focussing an eyepiece £ on the
plane F. Because the lens 7" and the eyepiece E constitute
a telescope focussed for an infinite distance, the fringes
are said to be localized at infinity.

Light 9
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The apparatus may also be adjusted so that the mirror
M, is inclined to R, the image plane of mirror M,, and
nearly in coincidence with it. The incident light is rendered
nearly parallel and normal to plane R. If the telescope is
removed, straight line fringes can be seen by an observer
who focusses his eye on the region between M, and R.
A bright fringe is the locus of points for which 2/, = pA.
These fringes are called fringes of equal thickness.

Fringes of equal thickness may be formed by reflection
at the two glass surfaces bounding an air film between
two glass plates (Figure 11). Strictly speaking, this ar-
rangement does not give two-beam interference because
multiple reflections occur, as shown in the figure. Only
the two beams 4 and B, however, need be considered for
present purposes. Beams like B” and (", caused by mul-
tiple reflections, are weak, and unless the glass plates are
fairly thin and of high optical quality, fringes formed by
beams reflected from the outer surfaces of the glass plates
are close together and are of poor visibility. If the arrange-
ment is such that one of the plates is truly planar and that

v\\/\/

Figure 11: Interference in a thin film of air between two pieces
of glass. The rays A, B, C, etc. interfere with each other, as do
rays A’, B', C', etc.

the other is spherical, as is the case for a convex lens lying
on a glass plate, the resulting fringes of equal thickness are
circles centred at the point of contact. They are known
as Newton'’s rings (see Plate). In this situation, in which
one surface is plane and the other is not, the fringes form
a contour map of the nonplanar surface. They are then
called contour fringes. This is a useful method for testing
the flatness of a surface and determining the location of
irregularities.

Multiple-beam interference. If the two inner surfaces of
the plates shown in Figure 11 are coated so as to make
them reflect 80 percent or more of the incident light,
then the resulting interference pattern will be caused by
the superposition of many beams. Figure 12 shows an
arrangement for producing the fringes of constant incli-
nation by multiple beam interference. The amplitudes of
successive beams are proportional to r, r2, r*, etc. (r is the
ratio of the intensity of the reflected light to that of the
incident light for one reflection). The phase differences are
¢, 2¢, 3¢, etc.. in which ¢ = (47e cos ))/4. These fringes are
much sharper than those obtained with two-beam inter-
ference (see Plate).

With a large number of beams the intensity is extremely
high when they are all in phase (¢ = 0), but, even when
the phase difference between any two successive beams
(e.g., the first and the second) is quite small, the phase
difference between the first and say the thirtieth beam is
so large that the later beams in the series are in opposition
to the earlier beams. Thus the intensity is relatively small
except when the value of ¢ is close to one of the values 2pr
(in which p 1s an integer). Multiple-beam fringes of con-
stant inclination were used by Charles Fabry and Alfred
Pérot in France for resolution of spectral lines having only
smali differences of wavelength. Multiple-beam fringes of
constant thickness have been used by an English physicist,
Samuel Tolansky. to detect surface irregularities down to
less than a nanometre.

T /

Figure 12: Multiple beam interference. Lens L concentrates all
beams at focus Q with same phase differences they had while
crossing a plane AB normal to OQ.

From R W Ditchburn, Light (1963). Interscience Publishing. Inc . by permission of
John Wiley & Sons, Inc

Wave groups. If two pendulums that have frequencies
v, per minute and (v, + 1) per minute are started together,
they will gradually go out of step: after half a minute they
will be moving in opposite directions and after a minute
they will be together again. Over a long time they will
move together once every minute. In a similar way, when
two waves of slightly different frequency are moving in the
same direction, they are sometimes in phase and some-
times out of phase so that the resultant is sometimes large
and sometimes small, as shown in Figure 13. Two waves
may be considered for which the spatial frequencies are v,
and (v, + 4v,) and temporal frequencies v, and (v, + 4v,).
The fluctuation represented by the envelope (dotted line
in Figure 13) is called the beat wave. It has a temporal
frequency equal to the difference (4v,) of the temporal fre-
quencies of the constituent waves and a spatial frequency
Av)) equal to the difference of the spatial frequencies. It
is therefore propagated with a velocity U = 4v,/Av,. Many
physical problems involve groups of waves that include a
range of frequencies. It is found that, even in a disper-
sive medium, a group is propagated over a considerable
distance as a recognizable unit. The velocity of this recog-
nizable group is U =dv,/dv..

There is a certain kind of wave group for which the
variation of the displacement with distance (z) along the
path of propagation may be represented by the expression

From RW Ditchburn, Light (1963). Interscience
Publishing, Inc . by permission of John Wiley & Sons. Inc
| U
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Figure 13: A simple beat wave of amplitude &

moving with velocity U (see text).

h(z) cos v,z, in which A(z) is a function that varies with z
much more slowly than cos v,z—e¢.g., in Figure 13, A(z)
would be the function represented by the dotted line, and
v, is the spatial frequency of the individual waves repre-
sented by the full line. These waves are called modulated
waves. If A(z) varies extremely slowly with z, the modu-
lated wave is quasi-monochromatic in the sense described
above; /.e., 1t departs little (over distances long enough to
contain many wavelengths) from a monochromatic wave.
A modulated wave is completely described when A(z) and
v, are known. It is also completely described when the
amplitudes and phases of the various waves that make
up the group are known. These are given by a func-
tion a dependent on the frequency v,, a(v,). Because /(=)
and a(v) both describe the same wave group, there must
be a relation between them. A mathematical theorem
of a French mathematician, Jean-Baptiste-Joseph Fourier,
gives this relation, making it possible to calculate either
h(z) or a(v) when the other is known. The average density
at = is equal to W{(z), which is proportional to (4[z])’. The
energy per unit frequency range near v, is G(v,), which is
proportional to (a[v ]).

Velocity
of groups
of waves
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When A(z) varies very slowly with z, a(v) is large for a
range of v close to v, and falls rapidly to near zero outside
this range, as shown in Figure 14B. If this range in which
G(v,) is large is v, and if /; represents a range of z over
which A(z) varies very little (as shown in the Figure), then
it is found that v, and /; are inversely proportional to one
another and that their product is of the order of magni-
tude of unity. This represents the fact that the longer the
wave train the more closely its properties agree with those
of the ideal monochromatic wave, which is infinitely long
and has a precisely defined frequency.

Undisturbed atoms emit exponentially damped waves

From (A) R.W. Ditchburn, Light (1963), Interscience
Publishing, Inc., by permission of John Wiley & Sons, Inc

B *o
Figure 14: Damped waves.

(A) Amplitude, &(z), as a function of distance, z. (B) Energy,
G(v), as a function of frequency, v. The figure shows strong
damping. For light emitted by free atoms, /; would encompass
107 waves or more and v, would be correspondingly

smaller (see text).

—_—

the length of which is usually 107 waves or more so
that vy is a small fraction of v,. Collisions increase the
damping by a factor that is proportional to the pressure.
The observed radiation is also modified by the Doppler-
Fizeau effect, because the atoms that emit the light do not
all have the same velocity. This increases the range Av.
Even when the effects of collision damping and Doppler—
Fizeau effect are combined, the value of /; for the wave
trains emitted in low pressure electrical discharges is still
about 10° wavelengths, and most of the energy is confined
within a frequency range of order 10~° v, (corresponding
to a wavelength range of less than 0.01 nanometre). These
quasi-monochromatic waves are called wave groups. The
light emitted by high-pressure lamps or by luminescent
solids extends over a much wider range of frequency, and
wave-group theory has little useful application to problems
concerning non-monochromatic light from these sources.

Wave groups in a dispersive medium. In vacuum, all
components of the group have the same phase velocity,
and therefore the phase relations between different mem-
bers of the group are constant. A group advances as a
unit without any change of the modulation function A(z).
In a dispersive medium, the phase relations change and
h(z) changes as the wave train advances, but this change
is slower than might be expected. Over considerable dis-
tances the group is propagated as a recognizable whole
with the group velocity U. The change of A(z) is small
for passage through a gas and also for groups (for which
v is small) that represent sharp spectral lines. Thus these
wave groups are propagated virtually unchanged through

an optical instrument or, if they arrive from the Sun or
stars, through the Earth’s atmosphere.

In Young’s experiment, Figure 4, the fringes have max-
imum visibility at the position O, corresponding to zero
path difference and zero phase difference for all wave-
lengths. If a thin sheet of mica is inserted in front of slit P,,
the centre (or position of maximum visibility) is displaced
upward. It was at one time thought that the new centre
would be found at the point corresponding to zero phase
difference for the mean wavelength in the wave group—
i.e., the point calculated for equal times from slits P,, and
P, allowing for the fact that the phase velocity in mica is
less than that in air. This did not agree with experimental
observation. It was found that the new centre is situated
at the position where the times from P, and P, are equal
when the group velocity is used to calculate the time re-
quired to traverse the piece of mica. At this position the
wave train from P, exactly overlaps the wave train from
P,. At any other position, part of each wave train cannot
take part in the interference because it does not coincide
with any part of the other wave train. This light that can-
not interfere forms a uniform background and so reduces
the visibility of the interference fringes.

If white light is used and a fairly thick piece of mica is
inserted, no fringes are obtained. This is because the wave
train has changed shape so much in passing through the
mica that it can no longer match the wave train that has
travelled through air.

Michelson, using the apparatus shown in Figure 10, stud-
ied the decrease in visibility of interference fringes as the
path difference between the two wave trains is increased.
The reduction in visibility as the path difference increases
may be assigned either (1) to the fact that the parts of
the wave trains that overlap are decreasing or (2) to the
increasing difference between the positions of the bright
fringes for different wavelengths in the group. As was seen
above, the length of the wave trains and the range of the
wavelength are inevitably linked, and so these alternatives
(1) and (2) do not constitute two different theories. They
are just two different ways of visualizing how wave trains
(or wave groups) interfere.

DIFFRACTION

Theory of diffraction. Huygens assumed that every
point on a wave front may be regarded as a source of
spherical wavelets the envelope of which is the position
of the wave front at a later time. Huygens was thus able
to account for rectilinear propagation and for the laws
of reflection and refraction. Fresnel added the hypothesis
that the wavelets can interfere and this led to a theory of
diffraction. Figure 15 shows how a coherent, monochro-
matic wave from a point source P falls on the screen

///
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Figure 15: Principle of Fresnel's theory of diffraction (see text).

S, which is opaque except for an aperture dS. Fresnel
assumed that the amplitude (d&,) of the wavelet at Q,
originating from a small area dS, is:

o= u /—r’foods, (11)

in which 4 is the amplitude of the incident wave, a is a
constant, r is the distance from dS to Q, and f(y) is a
function of y, the inclination factor; this factor was intro-
duced by Fresnel because he believed that the effect of
the element dS would be greater in the forward direction

11
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(x=0) than in an inclined direction. The total effect at Q
was obtained by superposing the wavelets from all parts
of the aperture, allowing for phase differences caused by
a variation of r and also for variation of the inclination
factor, f(x). Fresnel developed an ingenious method of di-
viding S into a series of zones of equal area and calculating
the total effect as the sum of a simple series. This method
applies only to circular apertures and obstacles and then
only to points on the axis of symmetry, but Fresnel also
developed integrals that are more generally applicable.
Fresnel predicted that there should be a bright spot
at the centre of the shadow of a circular obstacle. The
experimental verification of this unexpected result gave
confidence in Fresnel’s wave theory of diffraction.
Fraunhofer diffraction. When the source and pattern
screen are sufficiently far from the slit, the phase differ-
ences corresponding to different parts dS of the slit open-
ing vary linearly with x and y coordinates in the plane of
the aperture (Figure 16). This situation is obtained when
two spherical lenses L, and L, are introduced with source
P at the focus of L, and Q in the focal plane of L,. Spher-
ical waves emanating at the focus of a lens are rendered
plane wherever they encounter the lens. Plane waves are
made spherical by a lens. They have the same radius of
curvature as the focal length of the lens. The wave falling
on S is a plane wave, and the total effect at Q may be
regarded as caused by a plane wave leaving S. The same
result is obtained if L, and L, are replaced by a single lens
(situated near S') that forms an image of P at Q,. This
From R W Ditchburn, Light (1963), Interscience
Publishing. Inc . by permission of John Wiley & Sons. Inc
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Figure 16: Arrangement for Fraunhofer (far-field) diffraction.
The opening at S diffracts light from source P onto
plane Q (see text).

is known as far-field diffraction, or Fraunhofer diffrac-
tion, and is thus distinguished from near-field, or Fresnel,
diffraction. It should be understood, however, that there is
only one physical theory of diffraction that is derived from
the ideas of Huygens and Fresnel. Fraunhofer diffraction
is of great practical importance especially in regard to the
performance of optical instruments.

Groups of waves with different directions. When a
plane wave is incident upon a slit as shown in Figure 16
(so that its width is limited), the emergent light may be
represented by a group of plane waves. All the waves of
this group have the same spatial frequency but differ in
regard to direction of propagation. It is possible to define
a range of angles (in the plane of the page) within which
most of the light is found. If this range is 6, and the width
of the slit is w, then it is found that sin 0, is inversely
proportional to w; i.e., the narrower the slit, the greater is
the angular spread—sin 0y, is roughly equal to A/d. Using
Fourier’s theorem it is possible to derive an equation that
gives the amplitude and phase of the light diffracted in any
direction as a function of the width of the slit. Extension
of the calculation to diffraction by apertures or obstacles
of any shape involves more lengthy mathematics but no
new physical principle.

Angular power spectrum. The energy diffracted in any
direction is proportional to the square of the correspond-
ing amplitude. This energy expressed as a function of the
angles that define the direction is called the angular power
spectrum. It may be measured and is found to agree
with that calculated when the width of the slit (or, more
generally, the shape and size of the apertures) is known.
There are many problems in which it is desired to carry
out an inverse calculation—i.e., to calculate the shape and

size of the apertures from measurements of the angular
power spectrum. Unfortunately, this is not, in general,
possible because measurement of the angular power spec-
trum does not give the phase of the diffracted light. It is
found, however, that measurement of the angular power
spectrum yields a function (known as the auto-correlation
function) of the size and shape of the obstacles or aper-
tures responsible for the diffraction. In X-ray analysis, this
function gives important information about symmetry. A
complete picture of the crystal may often be obtained by
combining calculations from the angular power spectrum
with information derived from other sources.

It is found that when diffraction is due to a number of
apertures (or obstacles) that are similar in size, shape, and
orientation, the angular power spectrum (G) is the prod-
uct of two factors, F and f, in which F (called the form
factor) depends only on the properties of the individual
aperture and f (called the structure factor) depends only
on the arrangement or spacing of the elements. When the
apertures are irregularly arranged, f'is just equal to N (the
number of apertures). Thus the diffraction halos produced
by an irregular distribution of small similar objects have
the same intensity distribution as the pattern for a sin-
gle particle. This principle is used in a device called an
eriometer to determine the size of blood corpuscles and
may also be used to calculate the average size of the small
particles that cause a halo around the Moon.

When N similar elements are arranged in a regular pat-
tern, the structure factor may vary from zero to N2 A
diffraction grating (a plate having parallel lines engraved
across its surface) with N lines is such a pattern, and,
for any of the directions ¢, defined by equation (6), the
light from all elements (lines) is in phase; the amplitude
is N times that given by a single element, and thus the
energy and the structure factors are proportional to the
total number of lines squared—i.e., /= N2.

Limits of resolution. Diffraction spreads the light in
optical images; so that if two objects are too close to
each other, the gap between them cannot be distinguished.
The distribution of intensity with radius in the image of
a point source is shown in Figure 17. Rayleigh showed,
theoretically and experimentally, that the images of two
point sources are just resolved when their separation is
such that the centre of the pattern due to one image falls
on the first minimum of the pattern due to the other
(Figure 18). This implies that a telescope with a perfect
objective of diameter D can just resolve two stars whose
angular separation is 1.2 A/D. Qualitatively, this agrees
with a calculation that shows that most of the energy in
the diffraction pattern of an aperture of width  lies within
an angular range +1/d.

The angular separation of the maxima resulting from light

From R W Ditchburn, Light (1963). Interscience
Publishing, Inc - by permission of John Wiley & Sons, Inc
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Figure 17: lllumination of a point source image modified by
diffraction, shown as the variation of intensity with radius.

of two wavelengths 4 and 4 + 44 in a spectrum formed by
a diffraction grating is obtained by differentiating equa-
tion (6), resulting in 460 = pAi/e cos 6. These maxima are
just resolved if 40 = A/M, in which M is the width of the
beam diffracted by the grating. For a grating of N lines,
this width is Ne cos 6, and the resolving power R = A/
44 = pN. A grating ten inches wide, for example, with 10*
lines per inch and p = 10, has a resolving power R = 10°.
The limit of resolution for a microscope depends on
conditions of illumination and is at best about half a wave-
length (4/2), or about 250 nanometres for visible light.
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Figure 18: Overlapping images of two point sources. Full
lines show how intensity varies with distance from a separate
source, dashed line shows combined intensity.

From RW Ditchburn, Light (1963). Interscience Publishing, Inc , by permission
of John Wiley & Sons, Inc

Polarization and electromagnetic theory

POLARIZED LIGHT

Interaction of plane-polarized beams. Fresnel and
Arago, using an apparatus based on Young’s experiment
(Figure 4), investigated the conditions under which two
beams of plane polarized light may produce interference
fringes. They found that: (1) two beams polarized in mu-
tually perpendicular planes never yield fringes; (2) two
beams polarized in the same plane interfere and produce
fringes, under the same conditions as two similar beams of
unpolarized light, provided that they are derived from the
same beam of polarized light or from the same component
of a beam of unpolarized light; (3) two beams of polarized
light, derived from perpendicular components of the same
beam of unpolarized light and afterwards rotated into the
same plane (e.g., by using some device such as an optically
active plate) do not interfere under any conditions.

Result (1) is to be expected because two displacements
in perpendicular planes cannot annul one another, and
result (2) is also easily understood. Result (3) shows that
mutually perpendicular components of unpolarized light
in a beam are non-coherent. Their phase difference varies
in time in an irregular way. Unpolarized light has a ran-
domness, or lack of order, as compared with polarized
light (implying an entropy difference). This order (or lack
of order), rather than the azimuthal property, is the most
fundamental difference between polarized and unpolarized
light. Perfectly monochromatic light is perfectly coherent
and completely polarized.

Superposition of polarized beams. Two coherent beams
of plane polarized light may be thought of as propagated
in the O:z direction, one with its vector along Ox and
the other with the electric vector along Oy: i.e., the two
vibrations are at right angles to each other as well as
to the direction of propagation (Figure 19). If the beams
have amplitudes a, and 4, and phases ¢, and ¢,, then, in
general, the resultant vibration (R,, R,, and R,) may be
represented in magnitude and polarization by a vector, or
arrow, the tail of which touches the axis of propagation
Oz while the point moves round the ellipse (Figure 19). It

Figure 19: Progression of elliptically polarized wave (see text).

goes round once when the phase angle ¢ (see equation [1])
changes by 2n—i.e., at any given place when ¢ changes by
v or for any one time when z changes by 1. The beam is
said to be elliptically polarized. If the phase difference is
n/2, then the axes of the ellipse are equal to a, and a, and
are along O, and O,.

Elliptically polarized light may be regarded as the most
general type of polarized light. If the amplitudes of the
two waves are equal, a, = a,, and the phase difference is
still /2, the ellipse becomes a circle and the light is said
to be circularly polarized. If the phase difference ¢, is
not equal to 7/2, the resultant is still elliptically polarized
light, but the axes of the ellipse no longer coincide with
the axes of coordinates. If the phase difference ¢,,=0 or
. the ellipse shrinks to a straight line and the light is said
to be plane-polarized. If the representative vector, when
viewed by an observer who receives the light, rotates in
a clockwise direction, the light is said to be right-handed
(or positive) elliptically polarized light. The opposite sense
of rotation corresponds to left-handed (or negative) ellip-
tically polarized light.

In the above analysis, elliptically polarized light is re-
garded as the resultant of two beams plane-polarized in
perpendicular planes. Conversely, it is possible to regard
plane-polarized light as the resultant of two beams of

* unpolarized ray :

ordinary ray

Figure 20: Double refraction showing two rays emerging
when a single light ray strikes a calcite crystal at right
angles to one face (see text).

elliptically (or circularly) polarized light of the same wave-
length, provided that the ellipses are similar in orientation
and eccentricity, but one beam is right-handed and the
other left-handed.

Double refraction. In the 17th century Bartholin showed
that a ray of unpolarized light incident on a plate of
calcite, unlike glass or water, is split into two rays, as
shown in Figure 20. One ray, called the ordinary ray, is
in the plane containing the incident ray and the normal
to the surface. If the angle of incidence is varied, this ray
is found to obey Snell’s law of sines, equation (3). The
other ray. called the extraordinary ray. is not in general
coplanar with the incident ray and the normal; also, for it,
the ratio of sines is not constant. The fact that Snell’s law
is not obeyed in certain directions implies that the velocity
of light in such a medium, called anisotropic, depends on
the direction of travel in it. The two rays are polarized in
mutually perpendicular planes. This is known as double
refraction, or birefringence.

In order to apply Huygens’ method of constructing wave
fronts (see above Theory of diffraction), it is necessary to
assume that, in an anisotropic medium, the wave surface
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