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Preface

This book is an overview of the various aspects of signal process-
ing, but it should not be viewed as all-inclusive. The field is huge
and growing—nparticularly in the digital area. Present applications
usually involve a mixture of digital and analog techniques because
the speed of digital processors limits the bandwidth of signals on
which they can be used. However, since the speed of digital proces-
sors is increasing, all-digital techniques are beginning to surpass
analog techniques in popularity. Furthermore, the flexibility of dig-
ital processing allows the use of new techniques that are impossi-
ble to realize with analog techniques.
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Introduction

The earliest uses of electricity were substitutes for fire—lightbulbs
instead of lanterns and motors instead of steam engines. These
purely electrical devices quickly led to electronic devices such as
phonographs, radios, amplifiers, and televisions which are primar-
ily concerned with processing of signals. Still further developments
led to digital devices which process numbers, data, and perhaps
even ideas. The modern field of signal processing spans both ana-
log electronics and digital disciplines. Electrical signals can be pro-
cessed directly using analog circuits such as op-amp active filters
or indirectly by first digitizing the signal into a sequence of numeric
values and then processing these values in a digital computing de-
vice. While amplifiers and radios are indeed ways to process a sig-
nal, the term ‘‘signal processing’’ has come to mean a more limited
set of techniques which include primarily frequency selective filter-
ing, spectrum analysis, and spectrum shaping techniques. This book
will deal with both analog and digital techniques for performing
these types of processing.

Chapter 1 begins with a look at signals and spectra and the
mathematics conventionally used to represent them. Chapter 2 con-
tinues with a similar treatment of linear systems that are presently
used in the great majority of all signal processing applications.
Chapter 3 takes the general representation and analysis techniques
of Chapter 2 and applies them to frequency selective filters which
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are a particular type of linear system. Two of the most popular fil-
ter types—Butterworth and Chebyshev—are presented in great de-
tail in Chapters 4 and 5. The techniques needed to actually
implement one of these filters in analog hardware are presented
in Chapter 6.

We make the switch to digital signal processing beginning with
Chapter 7, which covers such fundamental concepts as sampling
and discrete-time signal and system analysis and forms the founda-
tion for all DSP techniques. Chapter 8 then looks at ways to imple-
ment the filters of Chapter 4 or 5 in a digital form, and Chapter
9 examines some digital spectrum analysis techniques that really
have no counterpart in the analog world.
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Chapter 1

Signals, Spectra, and Noise

HIS BOOK PRESENTS A COLLECTION OF TECHNIQUES FOR THE
T analysis and design of signal processing systems. Such sys-
tems can be as simple as a passive resistor-capacitor lowpass fil-
ter, or as sophisticated as a dedicated special-purpose computer
for realtime enhancement processing of video signals. Although a
trial-and-error approach may occasionally produce something use-
ful, a few mathematical techniques will prove indispensible in the
design process. Most of these techniques rely on the use of mathe-
matical functions to represent or model real world electronic sig-
nals as shown in Fig. 1-1. Actual electronic signals are very
complicated phenomena whose exact behavior may be very diffi-
cult or even impossible to describe completely, but simple mathe-
matical models often describe the signals closely enough to produce
very useful results in a variety of practical situations. The distinc-
tion between a signal and its mathematical representation is not
always rigidly observed in signal processing literature—functions
which only model signals are commonly referred to as signals and
properties of these models are often presented as properties of the
signals themselves. Purists take warning—this blurring of termi-
nology between a signal and its model crops up everywhere, so you
must learn to live with it.
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Fig. 1-1. Mathematical models of some practical signals.

This chapter and Chapter 2 are somewhat different from the
remainder of the book in that they present theoretical concepts and
some fundamental mathematics that are not meant to be used
directly for processing actual signals. Instead, this material pro-
vides a theoretical basis upon which rest the practical techniques
presented in later chapters. Although this material provides valu-
able insights, a complete understanding of it is not absolutely neces-
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sary in order to successfully employ the practical techniques
presented in Chapter 3 and beyond.

1.1 SIGNAL MODELS

Mathematical models of signals are generally categorized as
either steady-state or transient models. To understand the difference
between these two types, let’s examine Fig. 1-2 which shows the
typical voltage output from a 1 kHz audio oscillator. This signal
exhibits three noticeably different parts—a turn-on transient at the
beginning, an interval of steady-state operation in the middle, and
a turn-off transient at the end. We could formulate a single mathe-
matical function to describe all three parts, but for most uses it
would be unnecessarily complicated and difficult to work with. In
most cases, the primary concern is steady-state behavior, and sim-
plified mathematical representations that ignore the transients are
often adequate. The steady-state portion of the oscillator output
can be modeled as the sine function shown in Fig. 1-3. Theoreti-
cally, this sine function exists for all time, and this might seem to
be a contradiction to the obvious fact that the oscillator output only
exists for some limited time interval between turn-on and turn-off.
However this is really not a problem; over the interval of steady-
state operation that we are interested in, the mathematical sine func-
tion accurately describes the behavior of the practical oscillator’s
output voltage. Allowing the mathematical model to assume that
the periodic signal exists over all time greatly simplifies matters,
since the transients’ behavior can be excluded from the model. In
situations where the transients are important, they can be modeled

1 msec
—

/\/\/\/\/\ .

i L J

: : g turn-off
R/—) steady-state transient
turn-on

transient

Fig. 1-2. Typical output of an audio oscillator.
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Fig. 1-3. Sine function used to model the steady-state output of the oscillator
in Fig. 1-2.

as exponentially saturating and decaying sinusoids as shown in Figs.
1-4 and 1-5. Notice that the amplitude of the saturating exponen-
tial envelope continues to increase, but it never quite reaches the
steady-state value. Likewise the amplitude of the decaying exponen-
tial envelope continues to decrease but it never quite reaches zero.
In this context, the steady-state value is sometimes called an asymp-
fote, or the envelope can be said to asymptotically approach the
steady-state value. Of course, such behavior is true only in the pure
mathematics of the model—in the real world, signals will eventu-
ally get so close to their steady-state values that the difference will
be immeasurable.

Steady-state and transient models of signal behavior inherently
contradict each other and neither constitutes a “‘true’” description
of a particular signal. The selection of an appropriate model requires
an understanding of the signal to be modeled and of the implica-
tions that a particular choice of model will have for the intended

®(t) = R[l —e('uT)] sin wt

A

Fig. 1-4. Exponentially saturating sinusoid.
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Fig. 1-5. Exponentially decaying sinusoid.

application. The following sections will present details of the more
common steady-state and transient signal models.

1.2 STEADY-STATE SIGNALS

Generally, steady-state signals are limited to just sinusoids or
sums of sinusoids. This will include virtually any periodic signals
of practical interest since such signals can be resolved into sums
of weighted and shifted sinusoids using the Fourier analysis tech-
niques presented in Section 1-4. A few basic concepts and defini-
tions will prove useful in work involving steady-state signal models.

1.2.1 Periodicity. Sines, cosines, and squarewaves are all
periodic functions The characteristic that makes them periodic is
the way in which each of the complete waveforms can be formed
by repeating a particular cycle of the waveform over and over at
aregular interval as shown in Fig. 1-6. Mathematically, a function
x(t) is periodic with a period of T if and only if x(t +nT) = x(t) for
all integer values of n.

1.2.2 Symmetry. A function can exhibit a certain symmetry
regarding its position relative to the origin. The two major types
of symmetry—odd and even—are shown in Fig. 1-7. Symmetry may
appear at first to be something that is only ‘‘nice-to-know’’ and not
particularly useful in practical applications where the definition of
time zero is often somewhat arbitrary. This is far from the case
however, because symmetry considerations play an important role
in Fourier analysis—especially the discrete Fourier analysis which
will be discussed in Chapter 6. Some functions are neither odd or
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Fig. 1-6. Periodic functions.

even, but Table 1-1 presents formulas that can be used to resolve
any periodic function into the sum of an even function and an odd
function.

1.3 SINUSOIDS

The sine and cosine functions shown in F ig. 1-8 are together
known as sinusoids. When a sinusoid is input to a linear system (such
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Even symmetry: x(t) = x(-t)
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0dd symmetry: x(t) = -x(-t)
Fig. 1-7. Symmetry of periodic functions.

Table 1-1. Formulas Concerning Symmetry of Periodic Functions.

%(1) = Xeyen(t) + %ogq(t) ) (Eq. 1.2-1)
Xeven(t) = %[x(t) + x(-t)] (Eq. 1.2-2)
Xoaa(t) = [ () - x(-0) ] (Eq. 1.2-3)

even function + even function = even function (Eq.1.2-4)

odd function + odd function = odd function (Eq. 1.2-5)

odd function x odd function = even function (Eq. 1.2-6)

even function x even function = even function (Eq.1.2-7)

even function x odd function

odd function (Eq. 1.2-8)



