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NOTATION

A\UB : the set of points belonging to either of the sets 4 and B, usually called
the union of 4 and B.

U 4 :  the set of points belonging to any of the sets A;.

L ]

AB or

AM B ¢ the set of points belonging to both of the sets 4 and B, usually called

the product or intersection of the sets 4 and B.
M 4 : the set of points belonging to all the sets 4;.

A4~ B : the set of points in 4 but not in B, usually called the difference of the
sets 4 and B.

AOB ¢ the set of points in 4 or B but not both, usually called the symmetric
difference of the sets 4 and B.

xed :  x an element of the set 4.

0 - : f(x) = o(g(x)) as x — 7 if lim f(x)/g(x) = o

T

o P fx) = O(glx) asx— rif {f(x)/g()| S K< wasx—7.

=2 : f = g f is approximately the same as g.

= 1 f(x) = g(x) as x— 7 if Hm f(x)/g(x) = 1.

o1

x— y4 : xapproaches y from the right.

xmod r

with7 > 0: xmod s = x — mr where mr is the largest multiple of 7 less than or
equal to x.

g

(Kronecker

delta) t &)y is equal to one if A = 4 and zero ctherwise.

Rea : real part of the complex number a.

fal . .. }: theset of a satisfying the condition written in the place indicated by

the three dots.

All formulas are numbered starting with (1) at the beginning of each section of
each chapter. If a formula is referred to in the same section in which it appears, it
will be referred to by number alone. If the formula appears in the same chapter
but not in the same section, it will be referred to by number and letter of the section
in which it appears. A formula appearing in a different chapter will be referred to
by chapter, letter of section, and number. Suppose we are reading in section b of
Chapter IT1. A reference to formula (13) indicates that the formula is listed in the
same chapter and section. Formula (a.13) is in section a of the same chapter.
Formula (II.a.13) is in section a of Chapter 11,



INTRODUCTION

This text has as its object an introduction to elements of the theory
of random processes. Strictly speaking, only a good background in the
topics usually associated with a course in Advanced Calculus (see, for
example, the text of Apostol [1]) and the elements of matrix algebra is
required although additional background is always helpful. Nonethe-
less a strong effort has been made to keep the required background on
the level specified above. This means that a course based on this book
would be appropriate for a beginning graduate student or an advanced
undergraduate.

Previous knowledge of probability theory is not required since the
discussion starts with the basic notions of probability theory. Chapters
I1 and III are concerned with discrete probability spaces and elements
of the theory of Markov chains respectively. These two chapters thus
deal with probability theory for finite or countable models. The object
is to present some of the basic ideas and problems of the theory in a
discrete context where difficulties of heavy technique and detailed
measure theoretic discussions do not obscure the ideas and problems.
Further, the hope is that the discussion in the discrete context will
motivate the treatment in the case of continuous state spaces on intui-
tive grounds. Of course, measure theory arises quite naturally in prob-
ability theory, especially so in areas like that of ergodic theory. How-
ever, it is rather extreme and in terms of motivation rather meaningless
to claim that probability theory is just measure theory. The basic
measure theoretic tools required for discussion in continuous state
spaces are introduced in Chapter IV without proof and motivated on
intuitive grounds and by comparison with the discrete case. For other-
wise, we would get lost in the detailed derivations of measure theory.
In fact, throughout the book the presentation is made with the main
object understanding of the material on intuitive grounds. If rigorous
proofs are proper and meaningful with this view in mind they are pre-
sented. In a number of places where such rigorous discussions are too
lengthy and do not give much immediate understanding, they may be
deleted with heuristic discussions given in their place. However, this
will be indicated in the derivations. Attention has been paid to the
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4 Random Processes

question of motivating the material in terms of the situations in which
the probabilistic problems dealt with typically arise.

The principal topics dealt with in the following chapters are strongly
and weakly stationary processes and Markov processes. The basic result
in the chapter on strongly stationary processes is the ergodic theorem.
The related concepts of ergodicity and mixing are also considered.
Fourier analytic methods are the appropriate tools for weakly sta-
tionary processes. Random harmonic analysis of these processes is con-
sidered at some length in Chapter VII. Associated statistical questions
relating to spectral estimation for Gaussian stationary processes are
also discussed. Chapter VI deals with Markov processes. The two
extremes of jump processes and diffusion processes are dealt with.
The discussion of diffusion processes is heuristic since it was felt that the
detailed sets of estimates involved in a completely rigorous develop-
ment were rather tedious and would not reward the reader with a
degree of understanding consonant with the time required for such a
development.

The topics in the theory of random processes dealt with in the book
are certainly not fully representative of the field as it exists today.
However, it was felt that they are representative of certain broad areas
in terms of content and development. Further, they appeared to be
most appropriate for an introduction. For extended discussion of the
various areas in the field, the reader is referred to Doob’s treatise [12]
and the excellent monographs on specific types of processes and their
applications.

As remarked before, the object of the book is to introduce the reader
as soon as possible to elements of the theory of random processes. This
means that many of the beautiful and detailed results of what might be
called classical probability theory, that is, the study of independent
random variables, are dealt with only insofar as they lead to and moti-
vate study of dependent phenomena. It is hoped that the choice of
models of random phenomena studied will be especially attractive to a
student who is interested in using them in applied work. One hopes
that the book will therefore be appropriate as a text for courses in
mathematics, applied mathematics, and mathematical statistics. Vari-
ous compromises have been made in writing the book with this in mind.
They are not likely to please everyone. The author can only offer his
apologies to those who are disconcerted by some of these compromises.

Problems are provided for the student. Many of the problems may
be nontrivial. They have been chosen so as to lead the student to a
greater understanding of the subject and enable him to realize the
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potential of the ideas developed in the text. There are references to the
work of some of the people that developed the theory discussed. The
references are by no means complete. However, I hope they do give
some sense of historical development of the ideas and techniques as
they exist today. Too often, one gets the impression that a body of
theory has arisen instantaneously since the usual reference is given to
the latest or most current version of that theory. References are also
given to more extended developments of theory and its application.

Some of the topics chosen are reflections of the author’s interest. This
is perhaps especially true of some of the discussion on functions of
Markov chains and the uniform mixing condition in Chapters I1I and
VIII. The section on functions of Markov chains does give much more
insight into the nature of the Markov assumption. The uniform mixing
condition is a natural condition to introduce if one is to have asymptotic
normality of averages of dependent processes.



Il

BASIC NOTIONS FOR FINITE
AND DENUMERABLE STATE MODELS

a. Events and Probabilities of Events

Let us first discuss the intuitive background of a context in which
the probability notion arises before trying to formally set up a prob-
ability model. Consider an experiment to be performed. Some event 4
may or may not occur as a result of the experiment and we are inter-
ested in 2 number P(4) associated with the event 4 that is to be called
the probability of 4 occurring in the experiment. Let us assume that
this experiment can be performed again and again under the same
conditions, each repetition independent of the others. Let N be the
total number of experiments performed and N4 be the number of times
event 4 occurred in these N performances. If N is large, we would
expect the probability P(4) to be close to Na/N

P(A) = N4/N. (1)

In fact, if the experiment could be performed again and again under
these conditions without end, P(4) would be thought of ideally as the
limit of N4/N, as N increases without bound. Of course, all this is an
intuitive discussion but it sets the framework for some of the basic
properties one expects the probability of an event in an experimental
context to have. Thus P(4), the probability of the event 4, ought to be
a real number greater than or equal to zero and less than or equal to 1

0 < P(4) <1. (2)

Now consider an experiment in which two events 4;, 4, might occur.

Suppose we wish to consider the event “either 4, or 42 occurs,” which

we shall denote notationally by 4; \.J 4,. Suppose the two events are

disjoint in the following sense: the event 4, can occur and the event 4,

can occur but both cannot occur simultaneously. Now consider repeat-

ing the same experiment independently a large number of times, say N.
6



Finite and Denumerable State Models _ 7
Then intuitively

P(A]_) =~ NAl/A’, P(Az) =~ JVA,/N, (3)
P(A1 \J Aa) = NA,UA,/N.

But N4,u4,, the number of times “A4; or 4; occurs” in the experiment
is equal to N4, + N4, Thus if 4;, A, are disjoint we ought to have

P(41\J 4s) = P(41) + P(dy). 4
By extension, if a finite number of events 4;, . . . , 4s can c;ccur in an
experiment, let 4,\J 4,\J ... \U4, = 0 A; denote the event
“‘either 4, or dgor . . . or 4, occurs in the ;;pl)criment.” If the events

are disjoint, that is, no two can occur simultaneously, we anticipate
as before that

P(‘\_"Jl A él P(4)). (5)

Of course, if the events are not disjoint such an additivity relation will
not hold. The notation \J A; need not be restricted to a finite collection
of events {4;}. It will also be used for infinite collections of events.
Relation (5) would be expected to hold for a denumerable or count-
able collection 4;, 4;, . . . of disjoint events.

There is an interesting but trivial event @, the event “something
occurs.”” It is clear that Ng = N and hence

P@) = 1. (6)

With each event A there is associated an event 4, “4 does not oc-.
cur.” We shall refer to this event as the complement of 4. Since
Nz = N — N, it is natural to set

P(A) = 1 — P(A). (7)
Notice that the complement of 2, ¢ = & (“nothing occurs™) has prob-
ability zero
P(¢) =1 — P(@) = 0. @)
Let us now consider what is implicit in our discussion above. A
family of events is associated with the experiment. The events represent
classes of outcomes of the experiment. Call the family of events 4 asso-
ciated with the experiment & The family of events & has the following
properties: .
1 1. If the events Ay, AseF then the event A;\J A4,, “either 4, or A
occurs,” s an element of F.
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2. The event Q, “something occurs” is an element of F.
3. Given any event A€, the complementary event A, ““A does not oceur,”
is an element of .

Further, a function of the events A¢F, P(4), is given with the following
properties:

2 1.0< P4 L1
2. P(Q) =1
3. P(4,\J 4)) = P(A4)) + P(4s) if A1, A2eF are disjoint.

Notice that the relation
P(A) =1 — P(4) )

follows from 2.2 and 2.3.

In the case of an experiment with a finite number of possible ele-
mentary outcomes we can distinguish between compound and simple
events associated with the experiment. A simple event is just the speci-
fication of a particular elementary outcome. A compound event is the
specification that one of several elementary outcomes has been realized
in the experiment. Of course, the simple events are disjoint and can be
thought of as sets, each consists of one point, the particular elementary
outcome each corresponds to. The compound events are then sets each
consisting of several points, the distinct elementary outcomes they
encompass. In the probability literature the simple events are at times
referred to as the “sample points” of the probability model at hand.

The probabilities of the simple events, let us say Ey Es . .., E, are
assumed to be specified. Clearly
0L PE) <1 (10)

and since the simple events are disjoint and exhaustive (in that they
account for all possible elementary outcomes of the experiment)

z P(E) = 1. (1)

i=1
The probability of any event 4 by 2.3 is
P(4) = 3 P(E). (12)
E:CA
The events A of § are the events obtained by considering all possible
collections of elementary occurrences. Thus the number of distinct

events A of & are 2" altogether. A collection of events (or sets) satisfying
conditions 7.1-7.3 is commonly called a field. In the case of experiments
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with an infinite number of possible elementary outcomes one usually
wishes to strengthen assumption 7 in the following way:

7 1'. Given any denumerable (finite or infinite) collection of events Ay,
Aoy . .. of F AU A4, - - . =\U 4; “either 4; or 4, or .
occurs” is an element of §. Such a collection of events or sets with prop-
erty 7.1 replaced by 7.1" is called a sigma-field. In dealing with P as a
function of events 4 of a o-field ¥, assumption 2.3 is strengthened and
replaced by .

2.3’ P(U A,) = EP(A,) ifA]_, Az, . e ey E‘J (13)

is a denumerable collection of disjoint events. This property is commonly
referred to as countable additivity of the P function.

By introducing “sample points” we are able to speak alternatively of
events or sets. In fact disjointness of events means disjointness of the
corresponding events viewed as collections of elementary outcomes of
the experiment. Generally, it will be quite convenient to think of
events as sets and use all the results on set operations which have com-
plete counterparts in operations on events. In fact the \U operation on
events is simply set addition for the events regarded as sets. Similarly
complementation of an event amounts to set complementation for the
event regarded as a set.

It is very important to note that our basic notion is that of an experi-
ment with outcomes subject to random fluctuation. A family or field
of events representing the possible outcomes of the experiment is con-
sidered with a numerical value attached to each event. This numerical
value or probability associated with the event represents the relative
frequency with which one expects the event to occur in a large number
of independent repetitions of the experiment. This mode of thought is
very much due to von Mises [57].

Let us now illustrate the basic notions introduced in terms of a
simple experiment. The experiment considered is the toss of a die.
There are six elementary outcomes of the experiment corresponding
to the six faces of the die that may face up after a toss. Let E; represent
the elementary event “; faces up on the die after the toss.” Let

0<p;=PE) <1 (14)

be the probability of E;. The probability of the compound event
4 = {an even number faces up} is easily seen to be

P(A) = pa + ps + po - (15)
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The die is said to be a ““fair’’ die if

pr=pa= .- =ps=1.

Another event or set operation that is of importance can be simply
derived from those already considered. Given two events 4;, A:€J,
consider the derived event 4; M A; “both 4, and 4, occur.” It is
clear that

A1A2 = A1 f‘\ .42 = (quu 22) (16)

b. Conditional Probability, Independence, and
Random Variables

A natural and important question is what is to be meant by the
conditional probability of an event 4; given that another event A,
has occurred. The events 4;, A, are, of course, possible outcomes of a
given experiment. Let us again think in terms of a large number N
of independent repetitions of the experiment. Let N4, be the number
of times A4, has occurred and N4 ~4, the number of times 4, and 4,
have simultaneously occurred in the N repetitions of the experiment.
1t is quite natural to think of the conditional probability of 4; given 4.,
P(A,|A>), as very close to

; __ Nana, /Na,

NA;’.‘A:/NA: T T T (1)
if N is large. This motivates the definition of the conditional probability
P(4,|4.) by

P(Ay|4s) = P(A: M 45)/P(A2) (2)

which is well defined as long as P(4s) > 0. If P(4s) = 0, P(4,|4,) can
be taken as any number between zero and one. Notice that with
this definition of conditional probability, given any BeF (the field of
events of the experiment) for which P(B) > 0, the conditional proba-
bility P(4|B), A€F, as a function of AeF is a2 well-defined probability
function satisfying 2.1-2.3. It is very easy to verify that

?P(AlEi)P(E") = P(4) (3

where the E;’s are the simple events of the probability field &. A similar
relation will be used later on to define conditional probabilities in the
case of experiments with more complicated spaces of sample points
(sample spaces).
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The term independence has been used repeatedly in an intuitive
and unspecified sense. Let us now consider what we ought to mean by
the independence of two events 4;, 4;. Suppose we know that A3 has
occurred. It is then clear that the relevant probability statement about
Aj is a statement in terms of the conditional probability of 4, given 4,.
It would be natural to say that 4, is independent of 4, if the conditional
probability of 4, given 4; is equal to the probability of 4,

P(4,|4s) = P(4y), 4

that is, the knowledge that 4; has occurred does not change our expec-
tation of the frequency with which A4; should occur. Now

so that
P(A1 ﬂ .42) = P(Al)P(Az) (5)

Note that the argument phrased in terms of P(4s|4:) would lead to the
same conclusion, namely relation (5). Suppose a denumerable collec-

tion (finite or infinite) of events A1, 42 . . . is considered. We shall
say that the collection of events is a collection of independent events if
every finite subcollection of events 4, . . . yAr 1 S < - -+ <km,

satisfies the productrelation

P(Ads, - - - 4) = ] P(4n).
i=1
It is easy to give an example of a collection of events that are pair-
wise independent but not jointly independent. Let & be a field of sets
with four distinct simple events E;, Es, Es, E¢

PE)=Y, i=1...,4 ©6)
Let the compound events 4; i = 1, 2, 3 be given by
A1 = E1 U Eg
Az = E1 U Eg
A; = E;U Eq.
Then
PA)=13 i=123 @)
while
P(4:14,) = P(4,4y) = P(4:4y) = P(Ey) = 4. (8

The events 4; are clearly pairwise independent. Nonetheless
P(A14:4;) = P(Ey) = Y4 ¢ P(A)P(45)P(4s). 9



