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Author’s Preface

High costs and questionable availability of materials, land and other resources,
together with increasingly sophisticated analysis and manufacturing methods,
have led to lightweight structures, high energy sources and finely tuned control
systems. These trends, which will surely continue to an increasing extent in the
future as ever higher performance levels are demanded, have exacerbated noise,
vibration and control system problems.

There is therefore a real need for all practising engineers and scientists as
well as students, to have a good understanding of dynamic analysis methods for
predicting vibration amplitudes, dynamic stresses and noise levels in a structure,
and methods for determining control system performance. It is also essential
to be able to understand and contribute to published and quoted data in this field.

There is a great benefit to be gained by studying vibration analysis and
control system dynamics together and having this information in a single text,
because the analyses of the dynamics of control systems and the vibration of
elastic systems are closely linked. This is because in many cases the same equations
of motion occur in the control system as in the vibrating system, and thus the
techniques developed in the analysis of one system can be used in the other
and vice versa. Furthermore, the results of the analysis of one system can be
applied to another.

This book is intended to give practising engineers and scientists, and students
of engineering and science to first degree level, a thorough understanding of the
principles involved in the analysis of vibration and control system dynamics, and
to provide a sound theoretical basis for further study. A number of worked
examples have been included.

C. F. Beards, September 1980






CHAPTER.1

Introduction

The vibration which occurs in most machines and structures is undesirable, not
only because of the unpleasant motions, the noise and the dynamic stresses,
which may lead to fatigue and failure of the structure, but also because of the
energy losses and the reduction in performance which accompany the vibrations.
The literature is heavy with accounts of system failures brought about by
excessive vibration of one component or another. Because of the devastating
effects which unwanted vibrations can have on machines and structures, vibration
analysis should be carried out as an inherent part of the design, when necessary
modifications can most easily be made in an effort to eliminate vibration, or to
reduce it as much as possible. Modifications made after this stage, to prototypes
or production samples, are usually costly, difficult to implement and often
unsatisfactory. Current trends towards lightweight structures and high speed
machines are making this analysis increasingly important: as these trends continue
so will the need for vibration analysis grow.

The demands made on automatic control systems are also increasing. What-
ever the duty of the system, from satellite tracking to controlling sheet thickness
in a steel rolling mill, there is a continual effort to improve performance whilst
making the system cheaper and more compact. Accurate and relevant analysis
of control system dynamics is therefore very necessary, in order to determine
the effects of proposed modifications on the system response, as well as predicting
the response of new system designs.

There are two reasons why we should study vibration analysis and control
system dynamics together. Firstly, because we need to consider control in
relation to mechanical engineering using mechanical analogies, rather than as a
specialised and isolated aspect of electrical engineering, and, secondly, because
the basic equations governing the behaviour of vibration and control systems are
the same: different emphasis is placed on the different forms of the solution
available, but they are all dynamic systems. Each subject benefits from techniques
developed in the other.
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Dynamic analysis can be carried out most conveniently in the following
three stages:

Stage . Form a mathematical or physical model of the system to be
analysed.

Stage II. From the model write the equations of motion.

Stage III. Evaluate the system response to relevant specific excitation.

These stages are now considered in greater detail.

Stage I. The mathematical model

To model any real system a number of simplifying assumptions have to be made.
For example, a distributed mass may be considered as a lumped-mass, or the
effect of damping in the system may be neglected particularly if only resonant
frequencies are sought or a non-linear spring may be considered linear, or certain
elements may be neglected altogether if their effect is likely to be small. Further-
more the directions of motion of the mass elements are usually restrained to
those of immediate interest to the analyst.

Fig. 1.1 — Rover 3500 — front suspension (By courtesy of British Leyland).
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Thus the model is usually a compromise between a simple representation
which is easy to analyse but may not be very accurate, and a complicated but
realistic model which is difficult to analyse but does give useful results. Consider,
for example, the analysis of the vibration of the front wheel of a motor car.
Fig. 1.1 shows a typical suspension. Fig. 1.2(a) is a very simple model of this
same system, which considers translational motion in a vertical direction only:
this model is not going to give much useful information, although it is easy to
analyse. The model shown in Fig. 1.2(b) is capable of producing some meaningful

Proportion of /

body carried

by wheel
studied Damper
Spring
Unsprung mass
—Spring ,—— Tyre damping
Tyre stiffness
Fig. 1.2(a) — Simplest model — Motion in a Fig. 1.2(b) — Motion in a vertical direction
vertical direction only can be analysed. only can be analysed.

results at the cost of increased labour in the analysis, but the analysis is still
confined to motion in a vertical direction only. A more refined model, shown in
Fig. 1.2(c), shows the whole car considered, translational and rotational motion
of the car body being allowed.

/ Body mass
L ——Damper

Spring
Unsprung mass
(Front wheel)
Rear axle
mass ——Tyre damping

Tyre stiffness

Fig. 1.2(c) — Motion in a vertical direction, roll, and pitch can be analysed.
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If the modelling of the car body as a rigid mass is not acceptable, a finite
element approach to the analysis may be necessary.

A block diagram model is usually used in the analysis of control systems.
For example, a system used for controlling the rotation and position of a turn-
table about a vertical axis is shown in Fig. 1.3. The turntable can be used for

Turntable

Position transducer

Desired position selector

Error

(]

Power supply

Amplifier

Fig. 1.3 — Turntable position control system.

mounting a telescope or gun, or if it forms part of a machine tool it can be used
for mounting a workpiece for machining. Fig. 1.4 shows the block diagram
mode] used in the analysis.

Power supply

INPUT B - Error| OUTPUT
otentio- R
Fotar - Motor Turntable —
Desired Actual
position position
Potentio- Z
meter

Fig. 1.4 — Turntable position control system: block diagram model.
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Model Parameters

Because of the approximate nature of most models, whereby small effects are
neglected and the environment is made independent of the system motions, it
is usually reasonable to assume constant parameters and linear relationships.
This means that the coefficients in the equations of motion are constant and the
equations themselves are linear: these are real aids to simplifying the analysis.
Distributed masses can often be replaced by lumped mass elements to give
ordinary rather than partial differential equations of motion. Usually the numerical
value of the parameters can, substantially, be obtained directly, from the system
being analysed. However, model system parameters are sometimes difficult to
assess, and then an intuitive estimate is required, engineering judgement being of
the essence.

It is not easy to create a relevant mathematical model of the system to be
analysed, but such a model does have to be produced before Stage II of the
analysis can be started. Most of the material in subsequent chapters is presented
to make the reader competent to carry out the analyses described in Stages II
and III. A full understanding of these methods will be found to be of great
help in formulating the mathematical model referred to above in Stage I.

Stage II. The equations of motion
Several methods are available for obtaining the equations of motion from the
mathematical model, the choice of method often depending on the particular
model and personal preference. For example, analysis of the free-body diagrams
drawn for each body of the model usually produces the equations of motion
quickly: but it can be advantageous in some cases to use an energy method such,
as the Lagrange equation.

From the equations of motion the characteristic or frequency equation is
obtained, yielding data on the natural frequencies, modes of vibration, general
response, and stability.

Stage III. Response to specific excitation

Although Stage II of the analysis gives much useful information on natural
frequencies, response and stability, it does not give the actual system response
to specific excitations. It is necessary to know the actual response in order to
determine such quantities as dynamic stress or noise for a range of system
inputs, either force or motion, including harmonic, step and ramp. This is
achieved by solving the equations of motion with the excitation function present.

Remember:

StageI  Model
Stage II Equations
Stage III Excitation.
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So far we have considered a few examples of how real systems can be
modelled and the principles of their analysis. Obviously, if we are to be competent
to analyse system models, it is essential to be able to analyse single degree of
freedom systems, which are considered in Chapter 2, systems with more than
one degree of freedom in Chapter 3, and continuous systems in Chapter 4. Some
aspects of automatic control system analysis which require special consideration,
particularly their stability and the system frequency response, are discussed in
Chapter 5. Chapter 6 contains a number of exercises for the reader to try.



CHAPTER 2

The vibrations of systems having
one degree of freedom

A system with one degree of freedom is the simplest case to analyse because
only one coordinate is necessary to completely describe the motion of the system.
Some real systems can be modelled in this way, either because the excitation of
the system is such that the vibration can be described by one coordinate although
the system could vibrate in other directions if so excited, or the system really is
simple, as for example in the case of a clock pendulum. It should also be noted
that a one degree of freedom model of a complicated system can often be
constructed where the analysis of a particular mode of vibration is to be carried
out. To be able to analyse one degree of freedom systems is therefore an essential
ability in vibration analysis.

2.1 FREE UNDAMPED VIBRATION

2.1.1 Translational vibration

In the system shown in Fig. 2.1 a body of mass m is free to move along a fixed
horizontal surface. A spring of constant stiffness ¥ which is fixed at one end is
attached at the other end to the body. Displacing the body to the right (say)
from the equilibrium position causes a spring force to the left (a restoring force).
This force gives the body an acceleration to the left. When the body reaches its
equilibrium position the spring force is zero, but the body has a velocity which
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carries it further to the left although it is retarded by the spring force which now
acts to the right. When the body is arrested by the spring, the spring force is to
the right so that the body moves to the right, past its equilibrium position, and
hence reaches its initial displaced position. In practice this position will not
quite be reached because damping in the system will have dissipated some of
the vibrational energy. However, if the damping is small its effect can be neglected.

If the body is displaced a distance X, to the right and released, the free-body
diagrams (FBDs) for a general displacement x are as shown in Figs. 2.2(a) and (b).

kx —_—mx

Fig. 2.2(a) — Applied force. (b) — Effective force.

The effective force is always in the direction of positive x. If the body is
being retarded x will calculate to be negative. The mass of the body is assumed
contant: this is usually so, but not for example in the case of a rocket burning
fuel. The spring stiffness & is assumed contant: this is usually so within limits,
see section 2.1.3. It is assumed that the mass of the spring is negligible compared
to the mass of the body.

From the free-body diagrams the equation of motion for the system is

mx =—kx or x + (k/m)x =0 2.1)

This will be recognised as the equation for simple harmonic motion.

The solutionis x =A cos wt + B sin wt 2.2)
where A and B are constants which can be found by considering the initial
conditions, and w is the circular frequency of the motion. Substituting 2.2)
into (2.1) we get

— w?(A4 cos wt + B sin wt) + (k/m) (4 cos wt + B sin wt) =0
since 4 cos wt + B sin wt # 0 (otherwise no motion), w = \/(k/m) rad/s,
‘and x = A cos/(k/m) t + B sin\/(k/m) t.
Now x=xp att=0 soxo=A4, andx=0 atr=0 so0=Bv(k/m)

thatis, x =xo cos+/(k/m)t (2.3)



