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TRANSLATION EDITOR’S
PREFACE TO VOLUME I

A major trend in contemporary mathematics, for a period exceed-
ing 50 years, has been the study of spaces of functions that satisfy
difference conditions (such as the Holder continuity) and functions
that satisfy differentiability conditions, plus the imbedding relations

-among and between these various spaces. From the beginning of this

study, the Russian school has been a central contributor and, in
recent years, their acknowledged leader has been Sergey M. Nikol’skif.
In his 1969 book Nikol’skii summarized the contributions of his
school, using approximation by entire functions of exponential type
as his main tool. In this book, Nikol’skii and his colleagues Valentin
P. I'in and Oleg V. Besov bring us up to date. Integral representa-
tions using kemels that are adapted to the “shape” of the domain of
the function constitute the main tool used in Integral Representations
of Functions and Imbedding Theorems.

The Russian text was written in a somewhat informal style and we
have attempted to preserve the liveliness of the original. As the
translation editor, I should like to add a personal note. A substantial
part of my early mathematical work was built on the studies
described in this book. In particular, the pioneering work of what

vii



viii TRANSLATION EDITOR’S PREFACE TO VOLUME I

most properly are known as Besov spaces was fundamental to my

studies. I hope my efforts on this edition will repay, in part, my debt
to Oleg V. Besov and his co-workers.

There are two volumes in the English-language edition of Integral
Representations of Functions and Imbedding Theorems. The first
three chapters appear in Volume I and the last three in Volume II.

Chapter 1 is concerned with various integral ihequalities, and in

particular with a version of the Calderén-Zygmund theory in §4.
Chapter 2 introduces the major idea of the book, integral representa-
tions. In Chapter 3 the authors introduce anisotropic Sobolev spaces
on domains that satisfy a horn-condition (a generalization of a
cone-condition) and study imbedding theorems among these spaces.

Mitchell H. Taibleson
Chairman, Dept. of Mathematics
Washington University, Missouri
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INTRODUCTION

The theory of imbedding of spaces of differentiable functions of
several real variables developed as a new trend in mathematics in the
1930°s as a result of the works of S. L. Sobolev. In 1950, he
organized these results in the form of a monograph [2]. This theory
studies important connections and relationships of differentiability
prop-rties of functions in different metrics. Apart from its independ-
ent interest from the point of view of the theory of functions, it has
numerous effective applications in the theory of partial differential
equations. Sobolev included such applications in his monograph. He
studied isotropic spaces W (G) of functions f(x) defined on a
region G contained in E™ with norm

> 0%, o

lal<1?

1/
where [ is a natural number,p > 1,and || f ll,,¢ = { f | f(x) P dx } P .
G

Sobolev obtained the first imbedding theorems for regions in
n-dimensional spaces, specifically, the theorems on g-summability of
the derivatives DBf over a region or over manifolds of lower dimen-
sion contained in a region.

In recent years, imbedding theory has been intensively developed

1



2 INTRODUCTION

in various directions by the efforts of many mathematicians and has
acquired new interesting and important applications.
S. M. Nikol’skif developed a theory of imbedding of spaces

Hy(E™), I=(y ..., L), 1<p<oo,

the functions in which are characterized, first, by differential indices
of both integral and nonintegral orders (Holder conditions) and,
second, by the fact that, in general, they have different properties
with respect to the different variables. He first obtained a generaliza-
tion of those imbedding theorems that deal with a restriction to
manifolds of lower dimension. The method that he used was based
on approximation of functions by trigonometric polynomials or
entire functions of the exponential type (see [1], [9]).

. The first definitive results in the problem of traces of functions in
Sobolev spaces were obtained for p = 2 by Aronszajn [1] and
independently by V. M. BabiC and L. N. Slobodeckif [1] and by
Freud and Kralik [1]. Slobodeckii [2] developed for p = 2 a
complete theory of anisotropic Sobolev spaces W 5 (E"), where
l=(,, ..., 1,), with both integral and fractional indices of differ-
entiation of functions. Gagliardo [1] characterized, for 1 <<
p << oo, the traces of functions in the Sobolev space W' (E™)
on an (n— 1)-dimensional cross-section of E™.

O. V. Besov [3] used approximation methods to develop a theory
of the spaces Bf,,e(En), which are interesting in that they, like
H}-spaces, form a closed system with respect to the imbedding
theorems and also have a close connection with Sobolev (and
Slobodeckif) spaces since, for a suitable choice of the parameters,
they coincide with Wé (En) and also with the spaces of traces on Em
(for 'm << n) of functions in Wf, (E"), where 1 << p << o00.

Sobolev proved his imbedding theorems by means of integral
representations of functions in terms of their derivatives. This method
of integral representations was then further developed in the works of
V. P. I'in and, in particular, they were carried over to cases of
representation in terms of differences. One of the important



INTRODUCTION 3

advantages of the method of integral representations is that the
representation of a function at a given point x is constructed from
the values of that function at points of a bounded cone (or horn)
with vertex at the point x. This made it possible to study function
spaces of functions defined on an open set of rather general form (a
star-shaped region with respect to a ball, an open set with a cone
condition or with an /-horn condition, etc.).

In the development of various aspects of the theory of imbedding
of function spaces presented in the present book, other mathe-
maticians made their contributions: P. I. Lizorkin, S. V. Uspenskif, K.
K. Golovkin, V. A. Solonnikov, V. I. Burenkov, and others. Ref-
erences to their contributions will be made in the course of the
exposition.

The monograph of S. M. Nikol’skii [9] appeared in 1969. Among
other questions, this monograph illuminated a certain aspect of the
theory of imbedding of spaces of differentiable functions. It was
devoted primarily to the study of functions and function spaces
defined on the entire n-dimensional Euclidean space. In it, an
instrument of study is the apparatus of approximation of functions
by means of entire functions of the exponential type.

The present book and Nikol’skil’s monograph can be regarded as
two parts of a single work, presenting the results of the development
of the basic trends in imbedding theory over a period of many
years.*

These two books differ both in approach and in subject matter.
Here, the basic apparatus is integral representation of functions and
its subject is functions defined on regions in a Euclidean space. We
shall treat anisotropic Sobolev spaces and imbedding theorems for
them, various families of spaces of functions characterized by dif-
ference relations, the behavior of differentiable functions of particular
classes at infinity, estimates of mixed derivatives in terms of dif-
ferential operators, the dependence of imbedding theorems on the
structure of a region, a generalization of the Zygmund-Calderon
theorem on estimates of singular integrals together with applications

*Familiarity with Nikol’skil’s monograph is not a prerequisite for the present
book.
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of it, traces of functions on manifolds, questions of compactness of
sets of functions, and classes of the Morrey and Campanato types.

We do not discuss the theory of imbedding of weighted function
spaces. We mention only that the ideas and methods expounded have
direct and broad applications in that theory. The book is designed for
readers familiar with the Lebesgue integral.

The numbering of the formulas begins afresh in each section
(indicated by §). If reference is made to a formula in the section in
which the formula occurs, it will be indicated by the formula number
in parentheses, for example (39). If the formula is in another section,
the formula number in parentheses is preceded by the number of the
section in which the formula occurs, for example, 2(17). The
numbers of the theorems, lemmas, etc., coincide with the numbers of
the subsections in which they appear. They are referred to by the
subsection number.

In conclusion, the authors consider it their pleasant duty to
express their deep gratitude to Viktor Ivanovi¢ Burenkov and Petr
Ivanovi¢ Lizorkin, who read the book in manuscript and made a
number of valuable comments. Many of these were followed and they
made possible an improvement of the book.



Chapter 1

INTEGRAL INEQUALITIES

An important part of the investigation tools used in the present
book is constituted by estimates of integral operators of different
kinds. These estimates rest primarily on classical integral inequalities
such as those of Holder and Minkowski, the generalized Minkowski
inequality, Hardy’s inequality, the Hardy-Littlewood inequality for
fractional integrals, the Mihlin-Calder6n-Zygmund inequality for sin-
gular integrals, and various generalizations of them.

In the present chapter, we shall present the basic integral in-
equalities to be used later on and we shall also present the necessary
information on L, spaces of real functions.

§1. L, spaces

1.1. In this section, we shall state certain properties of spaces
Ly (G) of real functions f(x) defined on a measurable not necessarily
bounded subset G of E» where E™ denotes the n-dimensional
Euclidean space of points x = (X, . . ., X, ). Throughout, measurabil-
ity should be understood in the sense of Lebesgue.

5



6 INTEGRAL INEQUALITIES

Let p denote a real number such that 1 << p << oo. We denote
by Ly (G) the space of functions f(x) that are measurable on G and
for which the function |f(x)|# is Lebesgue-integrable on G.

The number

1k, @=11, o=([17 )P dx>””
G

is called the norm of the element [ & L, (G).

Consider also the space L« (G), that is, the space of functions
that are measurable and essentially bounded. The norm for this space
is

il =0, o= ess sup| f )1
The notation L, is justified by the fact that, for bounded G,
17l o= lim [ ]}, q
p>co

(see, for example, Nikol’skii [9], 1.1).
An important subspace of the space Lo, (G) is the space C(G) of
functions f (x) that are uniformly continuous on G with norm

I "C G = fg%l F(x) 1.

Thus, the spaces L,(G) are defined for all real p such that 1
<SP < oo

Let p = (p1, ..., pn) denote a vector with components satisfy-
ing the inequalities 1 < p; L oo fori=1,..., n

We denote by L,(E™) the space of functions f(x) defined on E»
that are measurable and for which the norm

0F U g5 =0 Flpy v gy =l e W Fly e Dy ey =

{(J]--{J(Jrrwr dxl)”””’ dxz}”“’«’z ]’ dxn}””"

E? E!
1)
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is finite. We note that the order in which the norms are taken with
respect to the different variables is significant; in general *

[ [ a( f1160 P dx‘)p,/p.].,,,,

o ol e marasf*]

Let G denote an arbitrary measurable subset of E™ and let f
denote a measurable function defined on G. Then, we set

Fll, g =T, g )

where f(x)=F(x) for x =G and f(x)=0 for x= E"\G. If
I Fll,, ¢ is finite, we write f & L, (G).

For simplicity, when G = E", we shall often write | f|| , instead
of || f ”p’ £

We note that, if p=(p, ..., p), then

I, o =1Fl,, o

In what follows, we shall write p=—=¢ and p > ¢, where
Pp=(py...,p,) and §=(q,, ..., g,) to mean respectively that
pi=>q, and p; > q; for i= 1, ..., n. In particular, the notation

. . — e,

1 <p<oo (where (1=(1,..., 1) and oo = (oo, ..., o))
means that 1 < p, L oo fori=1,...,n

Let us list a number of facts involving properties of spaces L, (G)
that we shall need.**

First of all, the space L,(G), where 1 < p << co, is a Banach
space of functions with the norm defined above. In the present case,
this means that the following properties hold:

*If p, <p,, then | f] pu pate B2 S| Flipy, py, g2 (see subsection 2.11 below).

**The article by Benedek and Panzone [1] is devoted to properties of Ly
spaces.
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1) ”fllp‘ ¢ = 0 is equivalent to f(x)= 0 for almost all x =G.

2) llefll, o =1¢lfl,, o

D N+ TFelly, g <SUFilly, g +1T2ll, 6
4) The space LP(G) is complete; that is, the inclusion and limit
relations

freLlp@) (k=12 ...), Ife—fill, ;—>0as &, l—>o?§)

imply the existence of a function fe& L,(G) such that
I Fe—Fl, g—>0as & —>oco.

Properties 1) and 2) are obvious. Inequality 3) is known as
Minkowski’s inequality (it will be proven in subsection 2.7). Let us
prove the completeness of the space L, (G).

Obviously, we can confine ourselves to the case G = En. Let
{fe)] denote a sequence of functions in L, (G) for which (3) holds.

To prove completeness, we shall use the corollary of proposition
2.6. According to the formula in that corollary, for any measurable
function ¢ and any p such that 1 << p << o0, we have

lol,= sup [lo(x)g(x)ldx, @
lelp=1 7

where p” = (pf, ..., ph) and —‘-+L,= lfori=1,...,n
Py Pi
Let {7 ,,,}T denote a family of bounded measurable sets such that
U1m=E" and let X, denote the characteristic function of the
m

set [,
Then, on the basis of (4), we have

IFy—fill,= sup E{ | fill gldx >, [ ,.,{I fe—fildx.

By virtue of (3) and the completeness of the space L,, this inequality
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implies the existence of a function [ defined on E~” such that
” (f—Tf» L7 ul — 0 for every m as k — oo. By means of a diagonal
process, let us extract from the sequence (f,}° a subsequence
{f k,}:o___l that converges to [ almost everywhere in E™. If we apply
Fatou’s lemma to the sequence {Ifkl — f l“ g I} (for k;=k;,
kiyys...), where || g ||p,=1, and then use equation (4), we obtain

[VFe,—Fl1@ldx< sup [ |Fe, —fx, | gldx
E* s= " gn

<kf;gi ” Fr, — fk/ ”p ‘

Since this inequality holds for arbitrary g € Ly such that || g”p,:
1, it follows that (f — f¢,) & Lp. This in turn implies (by Minkow-
ski’s inequality) that f = (f — f#,) + fr, € Lp. It then follows from
the last inequality on the basis of (3) that [|f — fll, — 0 as & — oo.
This proves property 4).

In what follows, we shall identify two equivalent functions (that
is, two functions that coincide almost everywhere on G and hence
have the same norm in the sense of Lp (G)), treating them as a single
element of the space L, (G).

REMARK. Let f denote a member of Lp, so that [If]l p < ©, and suppose

that p = (_}—),ﬂ, where ;= P, -.., pj) gnd 7: (Pi+1, -+ pn) for 1
§ j<n — 1. Then, the norm ||f(-,x)lp, as a function of the point
X = (Xj+1, + .., Xn), is measurable and almost everywhere finite. It is easy to

show this successively for j = 1, 2,..., n — 1 by using Fubini’s theorem. For
p;. representing infinite components of the vector p, we also use the relation
(see, for example, Nikol’skii [9],71.1)

b 1/q
lim (Jl(v(t)l"dt) =esssup|p| (b—a< o) )
g->oo 5

and the fact that the pointwise limit of measurable functions is a measurable
function.



