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Preface
to the Fifth Edition

Despite recessions, the microchip industry continues its evolutionary
march to the physical limits of silicon-based ICs. Fortunately, the end
seems always just over the hill, and the industry keeps chugging
along. Unfortunately, keeping a textbook current with the advances in
microchip fabrication means frequent updates. Hence this fifth edi-
tion.

This edition follows the same chapter sequence as the previous edi-
tions. Hopefully, this will assist instructors in upgrading their course
curriculums. Fortunately, the basics of semiconductor device operation
and wafer processing remain the same and will be found in this edi-
tion.

My thanks go to Steve Chapman, my editor at McGraw-Hill. His
guidance and patience with my writing schedule are appreciated.

Many thanks to Anne Miller and Michael Heynes of Semiconductor
Services for their consultation and input. Alex Braun, of Semiconduc-
tor International, and Nikki Wood, of Future Fab International, were
most helpful with securing permission to reproduce material from
their fine publications. Jeff Eckert, of J. K. Eckert & Co., did a fine job
on organizing the over 600 figures and editing the manuscript. Mark
Hall, Mark Hall Design, and David Wellner did yeoman’s work trans-
forming my hand drawings into understandable illustrations.

Last, but not least, thanks to my wife Mary Dewitt for enduring my
5:30 A.M. writing sessions and her unending support.
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Chapter

The Semiconductor Industry

Overview

In this chapter, you will be introduced to the semiconductor industry
with a description of the historic product and process developments
and the rise of semiconductors into a major world industry. The major
manufacturing stages, from material preparation to packaged prod-
uct, are introduced along with the mainstream product types, transis-
tor building structures, and the different integration levels. Industry
product and processing trends are identified.

Objectives

Upon completion of this chapter, you should be able to:

1. Describe the difference between discrete devices and integrated
circuits.

2. Define the terms “solid-state, “planar processing” and “N-type”
and “P-type” semiconducting materials.

3. List the four major stages of semiconductor processing.

4. Explain the integration scale and at least three of the implications
of processing circuits of different levels of integration.

5. List the major process and device trends in semiconductor process-
ing.

Birth of an Industry

The electronics industry got its jump start with the discovery of the
audion vacuum tube in the 1906 by Lee Deforest.! It was made possi-
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ble the radio, television, and other consumer electronics. It also was
the brains of the world’s first electronic computer, named the Elec-
tronic Numeric Integrator and Calculator (ENIAC), first demon-
strated at the Moore School of Engineering in Pennsylvania in 1947.

This ENIAC hardly fits the modern picture of a computer. It occu-
pied some 1500 square feet, weighed 30 tons, generated large quanti-
ties of heat, required the services of a small power station, and cost
$400,000 in 1940 dollars. The ENIAC was based on 19,000 vacuum
tubes along with thousands of resistors and capacitors (Fig. 1.1).

A vacuum tube consists of three elements: two electrodes separated
by a grid in a glass enclosure (Fig. 1.2). Inside the enclosure is a vac-
uum, required to prevent the elements from burning up and to allow
the easy transfer of electrons.

Tubes perform two important electrical functions: switching and
amplification. Switching refers to the ability of an electrical device to
turn a current on or off. Amplification is a little more complicated. It is
the ability of a device to receive a small signal (or current) and amplify
it while retaining its electrical characteristics.

Vacuum tubes suffer from a number of drawbacks. They are bulky
and prone to loose connections and vacuum leaks, they are fragile, they

Size, ft 30 x 50
Weight, tons 30
Vacuum Tubes 18,000
Resistors 70,000
Capacitors 10,000
Switches 6000
Power Requirements, W 150,000
Cost (in 1940) $400,000

Figure 1.1 ENIAC statistics. (Source: Foundations of Compu-
tector Technology, J. G. Giarratano, Howard W. Sams & Co.,
Indianapolis, IN, 1983.)

a

Figure 1.2 Vacuum tube.
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require relatively large amounts of power to operate, and their elements
deteriorate rather rapidly. One of the major drawbacks to the ENIAC
and other tube-based computers was a limited operating time due to
tube burn-out. However, the world did not recognize the potential of
computers early on. IBM Chairman, Thomas Watson, in 1943, ventured
that, “I think there is a worldwide market for maybe five computers.”

These problems were the impetus leading many laboratories around
the country to seek a replacement for the vacuum tube. That effort
came to fruition on December 23, 1947, when three Bell Lab scientists
demonstrated an electrical amplifier formed from the semiconducting
material germanium (Fig. 1.3).

This device offered the electrical functioning of a vacuum tube but
added the advantages of being solid state (no vacuum), being small
and lightweight, and having low power requirements and long life-
time. First named a transfer resistor, the new device soon became
known as the transistor.

The three scientists, John Bardeen, Walter Brattin, and William
Shockley were awarded the 1956 Nobel Prize in physics for their in-
vention.

The Solid-State Era

That first transistor was a far distance from the high-density inte-
grated circuits of today. But it was the component that gave birth to
the solid-state electronics era with all its famous progeny. Besides
transistors, solid-state technology is also used to create diodes, resis-
tors, and capacitors. Diodes are two-element devices that function in a
circuit as an on/off switch. Resistors are monoelements devices that
serve to limit current flow. Capacitors are two-element devices that
store charge in a circuit. In some integrated circuits, the technology is
used to create fuses. Refer to Chapter 14 for an explanation of these
concepts and an explanation of how these devices work.

Figure 1.3 The first transistor.
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These devices, containing only one device per chip, are called dis-
crete devices (Fig. 1.4). Most discrete devices have less-demanding op-
erational and fabrication requirements than integrated circuits. In
general, discrete devices are not considered leading-edge products.
Yet, they are required in most sophisticated electronic systems. In
1998, they accounted for 12 percent of the dollar volume of all semi-
conductor devices sold.? The semiconductor industry was in full swing
by the early 1950s, supplying devices for transistor radios and transis-
tor based computers.

Integrated Circuits (ICs)

The dominance of discrete devices in solid-state circuits came to an
end in 1959. In that year, Jack Kilby, a new engineer at Texas Instru-
ments in Dallas, Texas, formed a complete circuit on a single piece of
the semiconducting material germanium. His invention combined sev-
eral transistors, diodes, and capacitors (five components total) and
used the natural resistance of the germanium chip (called a bar by
Texas Instruments) as a circuit resistor. This invention was the inte-
grated circuit, the first successful integration of a complete circuit in
and on the same piece of a semiconducting substrate.

The Kilby circuit did not have the form that is prevalent today. It
took Robert Noyce, then at Fairchild Camera, to furnish the final piece
of the puzzle. In Fig. 1.5 is a drawing of the Kilby circuit. Note that
the devices are connected with individual wires.

Earlier, Jean Horni, also at Fairchild Camera, had developed a pro-
cess of forming electrical junctions in the surface of a chip to create a
solid-state transistor with a flat profile (Fig. 1.6). The flattened profile
was the outcome of taking advantage of the easily formed natural ox-
ide of silicon, which also happened to be a dielectric (electrical insula-
tor). Horni’s transistor used a layer of evaporated aluminum, that was
patterned into the proper shape, to serve as wiring for the device. This
technique is called planar technology. Noyce applied this technique to

* Transistors
e Diodes
« Capacitors

¢ Resistors Discrete Diode Package

Figure 1.4 Solid-state discrete devices.



