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PREFACE

This volume contains the contributions of participants of the conference “Optimal
Control of Partial Differential Equations” which, under the chairmanship of the editors,
took place at the Mathematisches Forschungsinstitut Oberwolfach from May 18 to May
24, 1986.

The great variety of topics covered by the contributions strongly indicates that
also in the future it will be impossible to develop a unifying control theory of partial
differential equations. On the other hand, there is a strong tendency to treat prob-
lems which are directly connected to practical applications. So this volume contains
real-world applications like optimal cooling laws for the production of rolled steel or
concrete solutions for the problem of optimal shape design in mechanics and hydrody-
namics. Another main topic is the construction of numerical methods. This includes
applications of the finite element method as well as of Quasi-Newton-methods to con-
strained and unconstrained control problems. Also, very complex problems arising
in the theory of free boundary value problems are treated. Finally, some contribu-
tions show how practical problems stimulate the further development of the theory;
in particular, this is the case for fields like suboptimal control, necessary optimality
conditions and sensitivity analysis.

As usual, the lectures and stimulating discussions took place in the pleasant at-
mosphere of the Mathematisches Forschungsinstitut Oberwolfach. Special thanks of
the participants are returned to the Director as well as to the staff of the institute.

Karl-Heinz Hoffmann - Werner Krabs

Augsburg Darmstadt
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ON A DOMAIN OPTIMIZATION PROBLEM
IN HYDROMECHANICS
T.S. Angell and R.E. Kleinman

Abstract. Certain hydromechanical quantities associated
with a floatingor a totally immersed body depend explicitly
on the body's geometry. We discuss some aspects of the
mathematical description of such a physical system and
consider the problem of choosing the shape of the body so
that one such quantity is optimized. Certain families of
solutions of the original boundary value problem are shown
to be complete and a penalization method for treating the
optimization problem is proposed.

1. INTRODUCTION

When a body, floating on the surface of an infinite, ideal,
inviscid, irrotational fluid is subjected to a periodic vertical
displacement, a wave pattern is created in the fluid. The
problem of determining this pattern from a knowledge of the body
geometry and applied forces is well known in fluid mechanics.

In problems with both partially and fully submerged objects
quantities of physical interest are not only the wave patterns
which may be derived from the velocity potential, but also
functionals of the potential such as added mass and damping
factors which measure the distribution of energy in the fluid,
e.g. Weyhausen and Laitone [24 , p.567]. These factors are, of
course, dependent on the body geometry and the natural question
arises as to whether such quantities may be optimized over
restricted classes of body geometry.

The question of optimizing the added mass (and similar)
functionals was addressed by Angell, Hsiao, and Kleinman [ 2]
who studied the problem for a body which is totally submerged in
a fluid of finite depth. 1In the terminology of optimal control
the problem is one of optimization of geometrical elements (see
e.g. J.L. Lions [17]). Other optimization problems of this
general class have been studied previously by, for example, Cea
and his coworkers [ 7], [ 8], Chenais [ 9], and Pironneau [21],
[22]. However, in contrast to much of the earlier work, the
natural setting of our problem is in an unbounded rather than in

a bounded domain.
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It will come as no surprise to those familiar with the
peculiar difficulties associated with exterior boundary value
problems that it is particularly useful to reformulate the
original boundary value problem (which here includes not only
boundary conditions given on the bounded surface of the body,
but also on the free surface and on the bottom both of which are
of infinite extent) as a uniquely solvable integral equation
defined on the boundary of the body.

Before summarizing the contents of the remaining sections
of this paper, it is perhaps worthwhile to pause and make some
comment on the boundary value problem itself and on its
reformulation in terms of boundary integral equations. Unlike
some other areas of mathematical physics as, for example the
linearized theories of acoustics or electromagnetics, there are
here certain basic questions to which we have only partial
answers.

In his classic paper [13], F. John formulated the problem
of a partially immersed heaving body as a boundary value
problem for the velocity potential which satisfies Laplace's
equation with given Neumann data on the submerged portion of the
boundary, a linearized free surface condition on the mean free
surface (the fluid-air boundary), a homogeneous Neumann condition
on the bottom of the fluid, and a radiation condition.
Successful application of the boundary integral equation method
usually depends on knowing that the boundary value problem can
have at most one solution, and it is just at this point that
interesting problems appear. He established uniqueness only with
restrictions on the body shape, in particular that it be convex,
smooth and have normal intersection with the free surface and,
moreover, that vertical rays from the free surface intersect the
body at most once. Certainly, these restrictions are required
by the technique of proof. To quote John: "There appears to be
no physical reason why in [the contrary] cases the primary wave
motion together with the motion of the obstacle should not
determine the motion of the liquid uniquely." [ 13, p.49].

Since the appearance of John's paper in 1950 others have
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returned to these and other questions raised by John's analysis.
Thus, for example, Kleinman has shown in [15] that the
geometrical conditions may be somewhat relaxed: corners are
allowable as are non-normal intersections with the free surface,
and convexity is not necessary. Concerning the requirement that
vertical rays intersect the body only once, the condition has
recently been relaxed in the two dimensional case by Simon and
Ursell [23] although even their work does not constitute a
general proof of uniqueness for all configurations. We will not
give a complete review here of the work on the uniqueness
question since the first part of this latter paper reviews the
current knowledge on that topic.

When the body is completely submerged, John's uniqueness
proof no longer applies. However Maz'ja [19] has provided a
proof for a class of bodies delimited, once again, by certain
geometric restrictions. The recent and interesting paper of
A. Hulme [12] discusses the result of Maz'ja and most effectively
describes the geometric meaning of the result. We will give a
precise statement of this result in the next section. At this
point, suffice it to say that the condition of Maz'ja provides
a reasonable class of bodies for which, in the case that the
body is totally submerged, we can assert the uniqueness of
solutions of the boundary value problem.

In the reformulation of the exterior boundary value problem
using boundary integral equations, John employed the Green's
function for the entire fluid domain with no body present that
satisfied the boundary condition at the bottom of the fluid
(assumed flat) and the linearized free-surface condition, on the
entire fluid-air boundary. Moreover, he demonstrated the
existence of "irregular frequencies" i.e. values of the coupling
parameter which appears in the free-surface condition, for which
the integral equation is not uniquely solvable. We emphasize
that this unique solvability question does not concern the
original boundary value problem but rather the integral equation:
we assume unique solvability of the former, and our object is to

discover how to avoid irregular frequencies in the latter.
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Recently, Kleinman [15] provided two methods of modifying
the integral equation so that there were no irregular frequencies.
In one case, the domain of the integral operator was enlarged
and in the other the operator itself changed but both methods
employed John's Green's function which is rather complicated.

L. Wienert [25] has addressed the question of solvability of a
boundary integral equation derived for the same class of bodies
with this Green's function.

Another wa? to treat this problem is to employ a much
simpler Green's function, one that satisfies only the boundary
condition at the bottom of the fluid. Since this function does
not satisfy the free surface condition one obtains an integral
equation defined over both the surface of the body and the free
surface. Such an integral equation was derived and even solved
numerically for certain cases, e.g. Yeung [26] and Bai and
Yeung [ 6 ]. Angell, Hsiao and Kleinman [ 1 ] showed that this
integral equation, in the three dimensional case, has no
irregular frequencies. More recently Tiu [18] has studied the
two dimensional case, both theoretically and numerically.

In the case of the totally submerged body we were able to
show in our earlier paper [ 2 ] that the integral equation arising
from the use of John's Green's function is uniquely solvable for all
frequencies. It is the formulation of the boundary value
problem, the statement of Maz'ja's theorem and the derivation
of this boundary integral equation which form the content of
the next section, while Section 3 contains a description of the
optimization problem and a statement of the results obtained in
[ 2] concerning the existence of an optimal body shape.

In the final section, Section 4, we turn to the question of
a constructive method for finding approximate optimal surfaces.
We prove there that certain families of functions form complete
families of solutions and propose a penalization-type method for
the constructive solution. The idea of using complete families
to find approximate solutions to elliptic equations goes back at
least to the work of Picone and of Fichera (see Miranda [20] for

references). Angell and Kleinman [ 3], [ 4] have used such
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families in treating some optimization problems which arise in
acoustic and in electromagnetic radiation problems. An
approximation method similar to that proposed here is discussed
in the context of an inverse transmission problem by Angell,
Kleinman and Roach [ 5]. A related method in the inverse
acoustic problem has been reported by Kirsch and Kress [14].
2. THE EXTERIOR BOUNDARY VALUE PROBLEM

We are concerned with solutions of Laplace's equation in an

3 exterior to a bounded boundary, T,

unbounded domain D' in R
which is assumed to be a Lyapunov surface of index 1. A
Cartesian coordinate system is fixed with origin in the unbounded
region determined by T in terms of which the domain

D+==R2x [-h,0] as indicated in the accompanying figure:

: %
; ‘s

/7 I 7777 77 777777 7777777 y=-h Fig.1

Indeed, the submerged body, whose interior we denote by D_, will
be assumed to be simply connected and lie in a strip
sz [-h+eo,eo] i eo:>0. The condition that the surface be
Lyapunov of index 1 guarantees, among other things, that there
exists an Lipschitz continuous normal A at all points of I'. We
emphasize that n is oriented so that it points into D,. Points
will be denoted by p = (xp,%),zp) with cylindrical coordinates
p = (pr,er,yp) and the subscripts will be omitted if there is no
danger of confusion.

With these conventions in mind, we will concern ourselves

with the following boundary value problem:
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(a) Ap=0 1in D, .
99 = =

(b) T + k¢=0 on y=0,
3¢ _ — _

(c) 5 = 0 on y=-h, (2.1)
3¢ _

(d) g'ﬁ =g on r ’

together with a radiation condition

(e) 32 - ikys =007 .

In this formulation, g € C(I') and kO is the root with the

largest real part of the transcendental equation

kn sinh knh = k cosh knh . (2.2)

In [19] Maz'ja introduced a restricted class of boundaries
for which this boundary value problem has at most one solution.
We formulate that theorem as follows.

Theorem 2.1. Let V be the vector field in ZR3 defined by
2 ; 2
ey —92)5_ 20"y 5
2. 2 2.2 |Y-
oty LP +y
Then the homogeneous boundary value problem (1) with g=0 has

o

V=

only the trivial solution provided

V:.-nz0 on T. (2.3)
A discussion of this result and its geometric significance may
be found in A. Hulme [12]. We will refer to the class of all
such surfaces as the Maz'ja class.
Following John [13] we introduce the Green's function for
this problem which is normalized to have the form

1 1

y(p,q) =- o W + R(p,q) (2.4)

where the function R has bounded derivatives with respect to
g for points peT (see[l13,p.96] and Y satisfies conditions
2.1b,c and e. Using this Green's function to define single and
double layer potentials, the usual jump conditions can be
established as in the potential-theoretic case since the

singular behavior of y and 5EH_Y is determined by the first

term in (2.4). For convenience, we record these results here:
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Lim 22 /u(@yp,@drg= xu@ + fuE) e g, (2.5)
pT* np mn, d
Lin fu(@ 55-v(p,@dr =+ u(® ¥ fu(@ vievg) g (2.6)
p+1"— q q q

where p—*r means approaches T' from DY, ue LZ(F) and the

relations (2.5) and (2 6) hold in the L, sense [201%

Moreover, if ¢ is a solution of the boundary value
problem (2.1) then one may use Green's Theorem to establish the
familiar relation

26(p), peD’
J [v(pqa—w— ¢(q);fl—v(p,qﬂdl‘q= ¢(), pel . (2.7)
k! q 0, peD
If one then uses the boundary condition (2.1d) we have, for

perl,

a =
[y(pr)gla)dr, 1£¢(q)-33§ [y(p,@)1dr =¢(p) (2.8)

or, in operator notation

(I+i*)¢=1{Y(p,q) g(q)dr (2.9)

q
where K* is the boundary integral operator with kernel

ay/anq. We pause to remark that, given a solution, u, of this
integral equation we may represent the solution of the boundary
value problem according to the relation (2.7) by

o) =z ve@g@a - 3 u@PDar , pedt (210

and, again using the jump relations, one sees easily that
¢l =u (2.11)

which is a direct relationship between the solution of the
boundary integral equation and the boundary values taken on by
the solution. Such a direct relation does not obtain when one
uses a layer approach in which one assumes that the solution ¢
had a representation as a single layer,

=/
¢ (p) J u(q)\((p,q)dl‘q .

and then uses the boundary condition and jump relations to obtain
an integral equation for u.
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As we will see below when we consider the optimization problem,
it is particularly convenient to have this formulation as the
cost functional involves just the trace of the solution ¢ of
(2.1) on T.

With the aid of these jump conditions, we have proved the
unique solvability of the boundary integral equation (2.9).
Specifically, we may state the following theorem referring to
[2 ] for the proof:
Theorem 2.2: Let T be Lyapunov of index 1 and belong to the
Maz'ja class. Let ge C(r'). Then the integral equation (2.9)
has a unique solution in LZ(P).
Remark: In fact, the solution whose existence is guaranteed by
this last theorem can be shown, by a standard argument to be
continuous since ge C(I'). However, we will not require this
result in what follows.
3. THE OPTIMIZATION PROBLEM

Let T, = {peE§[|p|=l} denote the surface of the unit ball

3 and let Cl’l(ro) denote the space of continuously

in R
differentiable functions whose first derivatives satisfy a
Lipschitz condition and which is equipped with the usual Ho6lder

norm | |- |1 l(see e.g.[10]). We will assume that we are given
’
a family of surfaces which can be described by Cl’l
parameterizations:
(£) }lp=£(3)8 ot
r = (peR" [p=£f(p)p+p Pi S
0" " |p - pyl
3 . 1,1 2
where f:I‘O->]R is an element of C (I‘O) and Pye R™ x (-h+50,-eo).

Let a and b be two positive constants and define the subset
i I
Fa,bcc (FO) by

1,1 ~ o~ 2
Fa,p = (£cC (I’O)l[Ifl|l’1Sb,f(p)p+poe]R><(—h+€0,-€0) (3.2)

and f(p)>a, pe Tol -

Definition 3.1. A surface S in R3 will be called admissible
provided S can be described by a parametization f e Fab and
’

S is contained in the Maz'ja class (c.f. Theorem 1.1).




