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Pretace

This monograph is an outgrowth of continuous research in
diffraction of elastic waves and effects of dynamic loadings on
underground openings and structures. The authors first became in-
terested in this problem in early 1960 and soon recognized that
although the subject of elastic wave diffraction had been under in-
vestigation for over a hundred years and problems of stress con-
centration had been studied nearly as long, there existed relatively
little information and few numerical results for the dynamic stress
concentration factor. It was also apparent that in order to have a
better understanding of how a ground shock interacts with under-
ground cavities or openings, questions of dynamical effects due to
wave diffraction must be answered.

Since the late 1950s, because of the support and impetus pro-
vided by various governmental agencies, research in this area has been
greatly accelerated, resulting in a flow of publications. By the
mid-1960s a substantial number of published theories and numerical
results had become available in journals and in reports from govern-
ment agencies and industry. It is thought that a systematic presenta-
tion of elastic wave diffraction and dynamic stress concentration
results is warranted because of their wide applicability. These results
can be applied not only in the study of hardened underground struc-
tures but in machine design, ultrasonics, structural design, the
mechanics of composite materials, and the theory of fractures.

. Thus, the objectives of the monograph are twofold: (1) to
systematically present methods of solution for both steady-state and
transient wave as diffracted by an obstacle, and (2) to present
numerical results of dynamic stress concentration on obstacles of
different geometries. An effort was made to collect information from
the open literature as well as from government agencies, industry,
and individuals. Because of the time constraints of manuscript
preparation and the rapid proliferation of research in this field, many
of the latest publications could not be cited in this monograph.

In undertaking this monograph, the authors had no idea it
would grow to such a mammoth size. They had planned to write a
self-contained monograph and to give so complete a discussion that
the reader would not be troubled with checking many references.
That plan was obviously too ambitious and unwieldy, and it was later
modified somewhat. Undoubtedly many equations and derivations
could have been omitted if references to standard texts and original
papers had been made.

Omitted from the plan were a section in Chapter IV on the
application of the integral equation method to the diffraction of P
and SV waves, a section in Chapter V on the application of the



Wiener-Hopf method to the diffraction of P and SV waves by a
semi-infinite strip, a section in Chapter VI on the scattering of SV
waves by a sphere, a chapter on spheroidal obstacles (elastic waves in
spheroidal coordinates), and a final chapter on experimental methods
and observations of elastic wave diffraction. However, even if every-
thing originally planned were included, this monograph still would
not be a comprehensive treatment on the diffraction of elastic waves.
One obvious omission is a detailed discussion of the scattering of
sound waves in liquid by an obstacle, with numerical results and
graphs. Another omission is the analysis of multiple scattering by
many obstacles. The authors wish to be excused if the reader is
disappointed by these omissions.

It is said that the publication of a monograph signals the end of
active research on the title subject. That will certainly not be true in
this case because of the research being done on the diffraction of
elastic waves that has not been treated in this monograph. The
authors will be most gratified if, in addition to achieving the twofold
objectives above, this monograph generates more interest in, and
research effort on, the diffraction of elastic waves and dynamic stress
concentrations. f

During the course of preparation of this monograph, many
friends and colleagues gave valuable advice and suggestions. The
authors wish to express their special thanks to the following persons
who, either as staff members of The Rand Corporation or as con-
sultants, contributed to this work: Richard Schamberg and D. J.
Masson ‘or their encouragement and support in beginning the
project, /. B. Graham and D. N. Morris for their sustaining support
and patience; Tiina Repnau for her able assistance in obtaining many
of the new numerical results contained in the text; David Gaken-
heimer for his critical review of the final draft and his helpful sug-
gestions; and last but not least, Jeanne Dunn, Nancy Hope, Mary
McCabe, Maggie Milstead, Alrae Tingley, and B. J. Verdick for their
excellent cooperation and perseverance in the preparation of the
manuscript. ;

The authors are also grateful to Stephen A. Thau, Department
of Mechanics, Illinois Institute of Technology, for reading Chapter 5
in manuscript.

This project was spousored by The Rand Corporation as part of
the continuing program of research which it conducts for the United
States A Force.

Ithaca, New York

Santa Monica, California
October, 1972
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In many cases of modern design, the elementary
solutions obtained by the application of the theory of
strength of materials are insufficient, and recourse has
to be made to the general equation of the theory of
elasticity in order to obtain satisfactory results. All
problems of stress concentration are of this kind.

Stephen Timoshenko, 1925

(from Transactions of The
American Society of Mechanical
Engineers, Vol. 47, 1925, p. 237)



Chapter 1

INTRODUCTION

1. A BRIEF HISTORY OF ELASTI€ WAVE DIFFRACTION

DIFFRACTION of elastic waves has its origin in the age-old searching
for the true nature of light. The name diffraction Qas given by Fr.
Francesco Maria Grimaldi (1618-1663) to the phenomenon that a light
beam might be bent slightly while passing the edge of an aperture.
It is now applied to a phenomenon of wave propagation when the rayé
of waves deviate from rectilinear paths, which cannot be interpreted
as reflection or refraction. In the first half of the 19th century,
light was interpreted as the propagation of a disturbance in an elas-
tic aether, the dynamics of which were described by what is now called
the Theory of Elasticity. Thus, the theory of the propagation of
elastic waves was developed long before the application of elasticity
theory to stress analysis for structures and machinery components.

One of the major problems in stress analysis is the determination
of stress concentration, which is the sharp increase of stress over a
nominal value in a localized region of a structural member due to geo-
metric discontinuities such as holes, corners, and notches. During
the first half of the 20th century, the subject of stress concentra-
tion had evolved from a mathematical curiosity to an important element

in engineering design. However, its understanding was limited to the



2 . DIFFRACTION AND STRESS CONCENTRATIONS

case of static loading, i.e., when the forces or other sources equiv-
alent to a force are applied gradually and slowly to a structural mém—
ber in order that the effect of its mass inertia can be neglected, or
yhen the forces have been applied long before the instant of recording
such that the observed data show little dependence in time. The in-
vestigation of stress concentration under dynamic loading has started
only very recently. As in the static case, the analysis of dynamic
stress concentration is also based on the theory of elasticity. Hence,
it is not surprising to find that dynamic stress concentration is
related to the propagation of elastic waves. The effect of a dynamic
loading is to generate elastic waves which propagate in a structure

or machinery member. When passing through a geometric discontinuity,
an‘elastic wave 1is diffrac;ed just as the path of a light ray‘is de-
viated by the edge of an aperture. Thus, dynamic stress concentration
is a result of the diffraction of elastic waves.

After the development of the electromagnetic and quantum theories
of light, no one would accept the elastic solid theory. In 1888, Lord
Rayleigh in the article "Wave Theory of Light" in the Encyclopaedia
Britannica stated that "The elastic solid theory, valuable as a piece
of purely dynamical reasoning, and probably not without mathematical
analogy to the truth, can in optics be regarded only as an illustra-
tion." It is in this spirit that we begin this section with a brief
recount of the "Elastic Solid Theory of Light." By traversing through
the historical paths, we will discover how elastic wave theory was
developed and trace the links which are common to all waves in nature,
including the sound (acoustic) waves, electromagnetic waves, and elas-

tic waves.
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The first four subsections are concerned with the historical sur-
vey of the diffraction and scattering of light, sound, and elastic waves,
together with the related mathematical theories and methods. At various
stages, we shall call attention to the prominent achievements of many

- piloneers and their influences on the modern day theory of diffraction
of elastic waves. The subjec; of static stress concentration is intro-
duced in subsection 5 as a separate entity, and then in the final sub-
section it is correlated with the diffraction of elastic waves and
dynamic stress concentrations, the latter including the static stress

concentration as a limiting case when frequency appfoathes zero.

1.1. Elastic Solid Theory of Light*

"In Grimaldi's book Physico-Mathesie du Lumine, Coloribus et Iride
which was published posthumously in 1665 at Bologﬁa,+ the author de-
scribed an experiment of ietting a beam of light pass through two narrow
apertures, one behind the other, and then fall on a black surface. He
found that the band of light on the surface was a trifle wider than it
was when it entered the first aperture. Therefore, he believed that
the beam had begn bent outward slightly at the edges of the aperture.
This was different from the hitherto observed phenomena of reflection
and refraction, and it was named diffraction.

The same phenomenon was npticed a few years later by Robert Hooke
(1635-1703) . Although Hooke, and his contemporary Christian Huygens

A comprehensive account of the elastic solid theory of light is
given by E. T. Whittaker, Ref. 1.1.

ferimaldi's book is one of the very early scientific books on
light. It is perhaps preceded only by G. B. Della Porta's De Refrac—
tione, Neapoli, 1593, see Ref. 1.2.
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(1629-1695) , were the early proponents of the "wave theory" of light,
diffraction w;s one of the phenomena they could not explain. For if
light was propagated like sound waves,* in the shadow region bounded
by an opaque screen light would spread equally and there would be no
darkness. Toward the beginning of the 19th century, diffraction,
polarization, and double refraction (in crystals) of light were the
major difficulties confronting the wave (longitudinal) theory of light.
In 1801, Thomas Young (1773-1829) discovered the law of interference

of light waves,(1'3a’ 3-3b)

which paved the way for Augustin Jean Fresnel
(1788-1827) to discover the real cause of diffraction. An interference
can be described simply as two waves that when mixed together destroy

(or reinforce) each other, either wholly or partially. In the memoir
which won him a prize from the French Academy of Sciences in 1818 on

the subject of "Diffractiom,”(1**)

Fresnel set forth the concept that
the diffraction-of light 15 thg mutual interference of the secondary
waves emitting frpm an aperture. If the incident waves are conceived
to be broken up on arriving at the aperture of a screen, each element
of the aperture is then considered as the center of a secondary dis-
turbance according to Huygens' principle. The intensity of the di-
verging spherical wave does not vary rapidly from one direction to
another in the neighborhood of the normal to the incident wave front,
and the disturbance at any point of observation is found by taking the
aggregate of the disturbances due to all the secondary waves. Since

the phase of the motion of each secondary wave is retarded by a quan-

tity corresponding to the distance from its center to the point of

*Sound ?ropagation in the form of a wave was established in Sir-
Isaac Newton's time (1642-1727).
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observation, the arriving secondary waves interfere with each other,
resulting in diffraction.

Shortly afterwards, Francois Arago (1786-1853) and Fresnel jointly
discovered experimentally that two beams of light polarized in planes
at right angles do not interfere with each other. This discovery led
Young to believe that light is a transverse wave in an aether,(l's)
and that the motion of the particles in the wave is in a certain con-
stant direction which is at right angles to the direction of propaga-
tion of the wave. This phenomenon was called polarization.*

Young's explanation of polarization was grasped immediately and
expounded further by Fresnel. -Based on the concept of transverse waves,

Fresnel presented three memqirs(l'7)

to the French Academy in 1821 and
1822 discussing double refraction in crystals. He reasoned that light
propagating in any direction through a crystal couid be resolved into
two plane-polarized components, each with a distinct velocity. Lacking
a theory for the transverse wave motion in aether at that time, ﬁe

found from a purely geometric argument that the two velocities must be
the roots of a quadratic equation. He derived this equation by con-
sidering the relative displacements resulting from a wave motion in

an aether. Thus, in a span of little more than one decade, all major
difficulties inherent hitherto in the wave theory of light were resolved.

The centuries-old question of the nature of light was answered by stating

that light was a transverse motion of waves in elastic aether.

. *The polarization of sunlight upon reflection was first observed
by Stephen Louis Malus (1775-1812) in 1809. Biographical accounts of
Arago, Malus, Fresnel, and Young and their scientific contributions
are contained in Ref. 1.6 with interesting notes and remarks added by
the translators.
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Although the equation for sound waves (longitudinal waves) in air,
also in aether, was already developed by the end of the 18th century,*
no general method had been developed for investigating the motion of
an elastic aether possessing resistance to both volumetric change and
distortion. In 1821, the year Fresnel presented his memoir on crystal
optics, Claud Louis-Marie-Henri Navier (1785-1836) presented a molec-
ular theory of an elastic body, giving an equation of motion for the

(1.8) His theory immedi-

displacement of a particle in elastic solids.
ately drew the attention of other members of the Academy who were
searching for an equation governing the transverse motion of elastic
aether. In thg subsequent years, Augustine-Louis Cauchy (1789-1857)
—started from an entirely different point of view and developed what is
known today as the '"Mathematical Theory of Elasticity" (See Section 2).
He not only introduced the notion of stress, strain, and stress-strain
relations, but also correctly established the.number of elastic con-
stants, two for an isotropic solid and 21 for a crystal. The equation
of motion in Cauchy's theory agrees with Navier's if the bulk modulus
equals 5/3 of the shear modulus of the solid.+

(1.11) In

Cauchy's theory was contained in a publication in 1828.
the same year, Siméon Denis Poisson. (1781-1840) succeeded in solving
the differential equation of motion for an elastic solid by decomposing

the displacement into an irrotational and a circuital (equivoluminal)

*

Jean le Rond D'Alembert (1717-1783) developed the partial dif-
ferential equation for a vibrating string in 1750. The same equation
was derived as a limiting case of a string of beads by Joseph Louis
Lagrange (1736-1813) in 1759.

See Refs. 1.9 and 1.10 for histories of elasticity theory and
concise biographical sketches of the scholars' contributions to that
theory.
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part, each part being a solution of a wave equation.(l'lz) Poisson's
analysis has been followed to this day in studying wave motions in
solids (see Section 2), but his finding of two waves in solids created
a new difficulty in the wave theory of light. For if the illuminous
aether behaved like an elastic solid, his analysis showed that two
waves* instead of one should be visible.

A multitude of modifications in the elastic solid theory were
proposed afterwards. In 1837, George Green (1793-1841) used energy
and variational principles to derive the equation of motion and cor-
rectly established the boundary conditions at the surface of an elas-

(1.13)

tic solid. His work stimulated James MacCullagh (1809-1847) to

postulate in 1839 a solid of which the potential energy depended only

on the rotation of a volume element.(l'la)

The equation of motion so
derived has the form uv x Vv x ¥ = pazulatz, Veu = 0, where v is the
vector displacement, p the shear rigidity and p the density. Since
in his theory, the longitudinal wave does not exist and the light wave
only propagates with one speed, (u/p)é, MacCullagh for the first time
really solved the problem of devising a medium whose vibrations, cal-
culated in accordance with the established laws of mephanics, should
have the same properties as the vibrations of 11ght.+
The elastic solid theory of light was soon replaced by the elec-

tromagnetic theory which had been developing independently for over a

century. In a series of papers capped by the memoir "A Dynamic Theory

*
The two waves are designated as P- and S-waves in this volume.

In terms of electromagnetic theory, v in MacCullagh's equations
corresponds to the magnetic field vector, uV x y to the electric field
vector.
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of Electromagnetic Field"* read to the Royal Society in 1864,(1'15) James
Clerk Maxwell (1831-1879) presented a unified theory of electromagnetism
and concluded thzt "light itself (including radiant heat, and other radi-
ation if any) is an electromagnetic disturbance in the form of waves prop-
agated through the electromagnetic field according to electromagnetic

laws." The experimental confirmation of Maxwell's theory in 1888 by Hein-

6 1
rich Rudolf Hertz (1857-1894)\1"6)

left no doubt that light was not an
elastic wave. However, that did not stop the most illustrious scientists
from analyzing the light wave as the propagation of a disturbance in an
elastic aether. Toward the end of the 19th century, many importanf con-
tributions on the diffraction of light--by Gustave Robert Kirchhoff (1824-
1887), Lord Rayleigh (John William Strutt, 1842-1919), Horace Lamb (1849-

1934), and others--were based upon the theory of elastic waves in’ solids.

1.2. Diffraction and Scattering of Light+

After the elastic solid theory for light was developed, it seemed
natural to employ it to investigate the phenomenon of diffraction. The
first attempt was made by George Gabriel Stokes (1819-1903) in 1849
when he presented the memoir 'Cn the Dynamical Theory of Diffraction"

to the Cambridge Philosophical Society.(l'l7)

Following Poisson's
approach to initial value problems associated with the wave equation,
Stokes derived the general solutions of the dynamic equations for the

propagation of a disturbance in an elastic medium. He assumed that

the disturbance was produced by a given initial disturbance which was

*Part of the corresponding statical theory was developed by M. W.
Weber and C. Neumann in 1858.

TThe observational diffraction phenomena together with a history
of their discovery are described in Ref. 1.19.
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confined to a finite portion of the medium. When light is.diffracted
by an aperture in a screen, each element of the aperture acts like a
source which generates secondary waves. Stokes applied his solution
to determine the disturbance corresponding to the secondary waves, and
he was able to show the polarization and magnitude of the diffracted
light at a point far away (when compared with the wavelength) frcm the
screen.

Stokes' paper and his continuous interest in the light wave,(l'ls)
plus an experimental discovery by Tyndall,* led Rayleigh to investigate
the diffraction of light by small particles and to provide the answer
to why the sky is blue.

Starting in 1871, Rayleigh discussed in a sequence of papers the
scattering of light by small particles.+ It should be noted that by
that time the electromagnetic wave theory of light was beginning to
be accepted and the difference (or resemblance) between a sound wave
(an elastic wave) and a light wave was understood. Thus, as far as
the mathematical analysis was concerned, light could be treated as
either an electromagnetic wave ér an elastic wave. Using the elastic

solid theory, Rayleigh found the important law of scattering in 1871: (1-22)

When light is scattered by particles which are very
small compared with any of the wave lengths, the ratio
of the amplitudes of the vibrations of the scattered and

*In 1868 Tyndall observed that when a condensed light beam passed
through a mixture of air and hydrochloric acid, a cloud was formed
which passed in color from the deepest violet through blue. Tyndall
remarked in his notebook, "Connect this blue with the colour of the
sky." See Ref. 1.20.

+
Rayleigh's contributions to the scattering of sound and light
waves have been reviewed by Twersky in Ref. 1.21.
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incident light varies inversely as the square of the wave

length, and the intensity of the lights themselves as the

inverse fourth power.
This law was discovered from a simple dimensional analysis of the
wavelength, the amplitude and the size of the particles. It was veri-
fied with a mathematical analysis based upon Stokes' work by consider-
ing the scattered light as being emitted from a body force in an elastic
medium. Since blue has a shorter wavelength in the visible light spec-
trum, when sunlight is scattered by fine particles (air molecules) in
the sky, the blue color with its dominant intensity prevails.

By treatiné the secondary waves as an emission from a body force
{n a homogeneous solid, the scattering effect as a consequence of the
difference between the refractive power of two media is attributed to
a change of density and not to a differeﬁce of rigidity. To attack
the problem more generally, Rayleigh later assumed a body source in
an isotropic but inhomogeneous elastic solid and thus included the
difference of rigidity as well as density in the analysis. The result
obtained substantiated his law of scattering.(l'23)

Rayleigh followed Stokes' approach to diffraction until 1872 when
he treated in detail the scattering of waves (sound) by a spherical ob-

stacle with a finite radius.(l'za)

This paper is most important because,
as’de from its mathematical rigor for a difficult problem, it set the
tone for many subsequent analyses of surface scattering. Ip this paper
a velocity-potential of the form ¢ = exp [Zk(x + ct)] is assumed and
expanded in a series of spherical harmonics. "The whole motian ex-

ternal to the sphere may be divided into two parts; that belonging to

the plane waves supposed to be undisturbed, and secondly a motion due



