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SOME DEVELOPMENTS OF THE FINITE ELEMENT
METHODS FOR FLUID MECHANICS

by
0.C. Zienkiewicz R.L. Taylor
Professor Professor
Civil Engineering Department Civil Engineering Department
University College Swansea, U.K. University of California
Naval Sea Systems Command Berkeley, California
Research Professor
Naval Postgraduate School
Monterey, California
ABSTRACT

The paper reviews and summarized the developments in:
(a) Penalty methods for enforcement of incompressiblity constraints.
(b) Galerkin-Petrov, upwind methods for concrete-diffusive problems.
(c) Hiererchial concepts of element formulation and introduces;
(d) new semi-explicit time stepping procedures.

INTRODUCTION

More than a decade has now elapsed since the entry of the finite element
method into the arena of numerical fluid mechanics. Its unlimited potential as a
unified approximation procedure is being realized today but many special developments are
required to make its applications economically advantageous.
In the opening lectures of the first and second conferences of this series
the first author had the priviledge of introducing two developments which today have be-
come established and widely used. The first of these, in the 1974 conference, was
the introduction of penalty formulation [1],[2] for simple treatment of incompressible
flow. The second, in the 1976 conference was the Petrov-Galerkin treatment of optimally
"upwinded” convective terms. [3],[4],[5] At this, third, conference we shall;
(a) survey the development of both 'upwinding' and penalty procedures;
(b) 1introduce a special penalty formulation not necessitating the use of reduced
integration.
(c) draw attention to 'hierarchieal' finite element concepts which have recently been
introduced with success to the solid mechanics field and finally;
(d) introduce a class of new time stepping methods which promises to improve the
economics of computation.

PENALTY PROCEDURES

Many physical processesaregoverned by differential equations of the type

where L, C and C are differential operators
Cu = and y, p the independent variables.
(1)

The Navier-Stokes equations of fluid mechanics are a particular case of above with
u standing for the velocities and p for the pressures. Further, in this particular
case the operator

T (2)

C= =V

tOl

is a constraint imposing incompressibility.



In penalty formulation we first approximate equation (1) by writing

L+ Cp=f (2)
Cu = B 0
e a

where, with o + » the original formulation is obtained.

The device of introducing the penalty parameter,a , has the advantage

of permitting the elimination of p, either before -.or after, discretization avoiding

the difficulties esso=iated wumerically with typical, zero diagonals,of Lagrangian form.
The two alternate approaches lead to discretization which can be written either

as ” _ _
“uu, Fup < £ (3)
g = 5l
~Pu, a ISPI:' e 0

with 9 = gg; p = ﬁ'i

Equation (3) leads on elimination of p to a form
(Koo + k) T = T 4

If alternatively p is eliminated at the differential equation level and
discretization adopted for y alone we have a form

(guu +(!I.(>1~1 =

K # K

&)

|

where in general

The evaluation of the matrix K in the first form of Eq. 4 is cumbersome and
costly for C° continuous p discretization. However, if the weak form of Eq. 1 permits
discontinuous approximations, the parameters P can be eliminated at element level. For
particular local discretizations of this form it can be shown that formuiation (&)
became identical with those of (5) in which quadrature rule adopted for K uses identical
number of values as the number of parameters required for p determination.[6]

It will be realized that the number of parameters of P introduced (or the
number of quadrature points used) is equivalent to the number of eenstraints of
incompressibility imposed. TIf this number is 'm' and the number of parameters describing
variation of u is'n'then clearly:for nontrivtal solutions

n>nm
is needed. In Fig. 1, we show the performance of various elements on the basis of a
number e

B:_

am (6)

for addition of a single element to a constraimed field. Obviously g<l will lead to
meaningless results. )



It is readily seen why the serendipity type element originally used (1)
has now been superceded by linear [7] and parabolic [8] Lagrangian elements with
reduced/selective integration. Using in place of reduced integration - locally defined
3 parameter linear expansion allows us to resurect the serendipity element as an
efficient non-locking one.[9][10]

Same comments apply to three dimqnsignal problems where again an extremely
efficient, serendipity type, brick with 20/ nodes has been developed using four
internal co.straints.

OPTIMAL, UPWINDED PETROV-GALERKIN SCHEMES

The original concepts of 'upwinding' or the use of non-symmetric weighting
functions have been suggested by some equivalent finite difference ideas but have not
followed the same path. Thus many objections (of excessive diffusion or inaccuracy)
have been laid to rest. It has been repeatedly shows that optimally upwinded schemes not
only eliminate 'wiggles' [11] but at all stages produce more accurate solutions in the
steady state convective-diffusive problems than dd symmetric Galerkin Bubnov type operators
(even in the extreme case when both numerical solutions are 'wiggle' free).

The interest in this area of finite element approximation has found its expression
in a recent conference on this subject[12]. Despite much discussion it can be concluded
that the original form of upwinding for one dimensional and two dimensional elements[3][5]
is still not superceded although variants in the formulation using special quadrature
rules [13] or equivalent compensating diffusion[14][15]ease numerical compu tionm.

Extension of upwinding to the Navier-Stokes equations has followed a similar
path and today this is widely used in that context[16-19] .

For transient, non-steady state convective-diffusion problems much yet remains
to be dome but clearly if such problems tend to steady state precisely the same amount of
'upwinding' will be necessary. Thus concentration of activity on reduction of 'error' in
time marching schemes is of primary importance.

HIERARCHICAL CONCEPTS AND ITERATIVE SOLUTIONS

As the finite element method is an approximation process it is frequently necessary
to use two or more mesh refinements to obtain an accurate solution. In the standard use
of finite elements the subdivided mesh does not contain the coarser mesh shape functions
and in general no use is made of the coarse mesh solution to obtain the refined one. If
on the other hand, shape functions are arranged 'hierarchically' in such a manner that
the refined variables éj)are superposed on the coarse ones (ai) then the matrix
discretized forms are
for coarse mesh

K..a,=f (7)

- H ®
£,
J

Here not only the original (coarse mesh) matrix reappears but ai, the coarse mesh
solution forms a first approximation to the iterative solution of the refined variables.
Hierarchical funtions arise naturally in the 'global-local' approximations of
Mote [20] or in successive addition of polynomial modes to isoparametric elements[21].
The realization of the power of the process for refinement of solution by iteration
can be credited independently to Wilson [22], Wachspress[23],Peano[24][25], Szabo[26].
Indeed the latter two authors and their collaborators have extended the process to
self-adaptive mesh refinement procedures [viz. Babuska 27][28].

for fine mesh

~

K , K, . lai

Kyp, 33 18



While all the applications of the hierarchical concepts have so far been made
in the context of linear solid mechanics, their use in non-linear fluid mechanics area is
yet to come. If we consider the fact that iterative processes are invariably necessary
in such problems and that these are the major part of the cost of the operation it seems
that the use of hierarchical concepts is here overdue.

In the finite difference context parallel progress has been made using so
called multi-grid procedures in which acceleration of iteration by simultaneous use of
coarse and fine grids together with appropriate interpolation has proved successful.[ 28]
Clearly in finite element form where the link between successive refinements is clearer
the process would be even more advantageous.

A NEW SET OF TIME STEPPING ALGORITHM (SEE) SELECTIVE EXTRAPOLATED EXPLICIT PROCESSES

The solution of unsteady state fluid mechanics problems (or indeed the use of such
usteady solutions as an interation device to obtain steady states) necessitates the use of
efficient time stepping processes. Many such processes are now known and well documented;
further most of these can be developed via the applicaiton of finite element concepts
to the time domain.

With 'explicit' processes the computation of each time step is trivial as no
equation solving processes are involved. Unfortunately such schemes are plaqued by
instability and an extremely small time step is generally neede to overcome this. Un-
conditionally stable, implicit methods requires en the other hand a full equation solution
to be carried out at each computational step and thus the cost per time step as very much
larger. In the finite difference context a very much economical compromise has been
achieved in the so called ADI (Alternating Direction Implicit) processes [31/33] and
some attempts at grafting these methods on to the finite element formulations have
recently been made.[ 33]

Here we shall outline general partioning/staggered processes which are
similar to the ADI methods but which can in the limit be reduced to a fully explicit
and unconditionally stable methods. We shall class the method under the name of SEE (sel-
edtive Extrapolated Explicit) Process

The motivation for the methods here described comes from proce?ures_ —
developed for the solution of coupled physical systems by Parks and Fellipa [34],[35]
the approach below assumes that we are dealing with two sets of (discretized) physical
variables a; and a, which obey the coupled equations of first order

2
Gy & * Kyyag * [c12 i, * Xy az] = £ (92)
Bgg 8y + Ky 8 +[Czr'il * By az] “ &y k)

Considering the above system we can proceed as follows. First,6 by the use
of some integratjon algorithm, solve equation (9a) for the variable a; n+ using known
values of a- ag* etc., and S§Erapolated values of ZX and 2%, Second, apply a similar
solution to Eq. (9b) for 32 using now the values“of a? -computed in the first step of
the operation.

Using unconditionally stable although not necessarily identical algorithms,
for each stage of the operation and a suitable extrapolation procedure unconditional
stability of the whole process can be assured.

Consider for instance the application of linear expansion of a; and a, and
the use of suitable weighting resulting in a two point 6 , algorithm [367] to Eq.(9.1)
We have now, at stage 1 of the operation

/ o+l n / o+l n )=
Ci1 (9.1 2 ) + AtK1;]_(elél ¥ (1—61) Gl (10)
z X - o
BEy =~ Uy g ~ ARGy By



L3

where the extrapolation of the mean values E“ and 32 can proceed in a variety of ways e.g.

writing 2
a% n n-1
a, =8 = )
2 Py g 11)
=X _ 8 n n n-1
22 1 <a2 +a(a; - a, )>+ (1-0) a)
Once ain+l is evaluated from equation (10) similar time marching process

applied to E3. (9b) gives

o+l n o+l n

(12)

= n+l n n+l n
atf, - cpi(a; -2 ) 4K,y 6, 3+ (1-8) a)

The Splitting' of the vector of the unknown variables a can be many fold
and stability conditions for 'two way' split continue to apply. Thus the variables
2 can be subdivided into a series of small partitions and matrices of size X only
then require solving at each step of the computation. Indeed the splitting can be
continued to the individual components of 'a’thus achieving a fully explicit
computation.

The order in which the various partitions are dealt with can be varied at
alternate steps =~ = = . o : - ;

Experiments with the procedure are continuing but preliminary tests show that
(a) wunconditional stability is readily achieved;

(b) accuracy of computation can vary with the order in which the splitting is
carried out.

It appears that a very general and useful computations tool is now available
which can be used to reduce substantially the cost of time stepping computation and,
if these should be used for iterative purposes, to reduce the cost of such solutions.

The SEE method can in a similar vein be applied to second order equations and its
usefulness in that context is now being studied.

If the 'splitting' process is arranged to follow a hierarchical subdivision of
variables discussed in the previous section greatly improved accuracy will be
achieved for reasons there mentioned.

In Fig. 2, we show the SEE procedure applied as an explicit process in the
solution of a one dimensional heat diffusion equation using two alternative
sequencing of the partition.

In conclusion, we should mention that the time stepping algorithm developed
by Truillo though formally resembling the process described here differ in many sub-
stantial respects(in particular, omitting the extrapolation process).[36][37]
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