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Preface

The third edition of this book differs from its predecessors in a number of
ways. The material on Liapunov theory has been expanded moderately.
Experience with the book has led me to rearrange some topics—the principal
change being that of introducing somewhat earlier the concept of the
phase plane; the notion of linear independence appears much earlier in the
text. The calculation of series solutions in the neighborhood of a regular
singular point has been simplified considerably. The number of exercises
has been carefully increased, and some of the proofs have been made more
precise.

The text is arranged so that classes unfamiliar with differential equations
may begin with Chapter 1. Classes that initially are acquainted with elemen-
tary methods of solving differential equations may review the first three
chapters quickly before beginning their study of Chapter 4. And those
classes for whom the ideas of Chapter 1-3 are quite familiar may well choose
to begin their course of study with Chapter 4. Chapters 3 and 6, on physical
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vi Preface

applications, may be omitted by classes interested only in the mathematical
theory, without interrupting the continuity of the text.

This edition, like its predecessors, has the benefit of comments from both
teachers and students who have used the text. A useful criticism, for example,
came from as far as the National Chiao Tung University where a graduate
student, Kun-chou Lin, was troubled by something that in turn troubled
the author. My thanks go to all who have contributed the many helpful
suggestions.

Special thanks go to Professors Courtney Coleman, David A. Sanchez, and
David V. V. Wend who read the manusecript for this edition in its entirety and
whose comments were searching, useful, and frequently challenging.

Walter Leighton
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1

Elementary methods

1 Iniroduction

Differential equations are equations that involve derivatives. For ex-
ample, the equations
y' =f@),
yll + y e O,
(1.1) y' =1 +y?)
Pu ou_
ox® T oy

are differential equations. The first three of these equations are called ordinary
differential equations because they involve the ordinary derivatives of the
unknown y. The last equation is an example of a partial differential equation.



2 Elementary methods [Chap. 1]

We shall be concerned with ordinary differential equations and their solu-
tions.
To solve an algebraic equation, such as

(1.2) 22 — 3z + 2 =0,

we seek a number with the property that when the unknown z is replaced
by this number the left-hand member of the equation reduces to zero. In
equation (1.2) either the number 1 or the number 2 has this property. We
say that this equation has the two solutions 1 and 2. To solve a differential
equation we seek to determine not an unknown number but an unknown
function. For example, in the equation

(1.3) ¥ +y=0,

y is regarded as the unknown. To find a solution we attempt to determine a
Junction defined on an interval with the property that when y is replaced by
this function, the equation reduces to an identity on this interval. It is clear
that sin 2 is a solution of (1.3) for all values of z, for

(sinz)” + sinz =0 (—o0 < 2 < o).

Similarly, it is easy to verify that cos  is also a solution of the differential
equation (1.3).

Differential equations play a fundamental role in almost every branch of
science and of engineering. They are of central importance in mathematical
analysis. A differential equation describes the flow of current in a conductor;
another describes the flow of heat in a slab. Other differential equations de-
scribe the motion of an intercontinental missile; still another describes the
behavior of a chemical mixture. Sometimes it is important to find a particular
solution of a given differential equation. Often we are more interested in the
existence and behavior of solutions of a given differential equation than we are
in finding its solutions.

In this chapter we shall begin our study by solving certain simple and
important types of differential equations.

The order of a differential equation is the order of the highest derivative
that appears in the equation. Accordingly, the first equation in (1.1) is of
first order, and the next two equations are of second order. Similarly, the
differential equation

Yty =e
is of third order, and the equation
(¥ +yy =3
is of fourth order. The differential equation

(1.4) M@, y) + N, y)y =0
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is of first order. It is frequently useful to rewrite this equation in the form

M(z,y)dz + N(z,y)dy = 0.

Thus,

(22 + y?) dx + 22dy = 0,

ze¥dr + (1 + y)dy =0

are differential equations of first order written in the form (1.4)".

Exercises

Verify that if ¢, and ¢, are constants, ¢; sin z + ¢, cos z is a solution of the
differential equation y” + y = 0.

Find by inspection a solution of each of the following differential equations:
(8) y —y=20;

(b) ¥y + 2y = 0;

(c) ¥’ = sin 2.

Find by inspection a solution of each of the following differential equations:
(a) " —y = 0;

(b) 2y’ —y = 0;

(e) y" = 0.

Verify that the function c,e* + c,e2* (c,, ¢, constants) is a solution of the
differential equation y” — 3y’ + 2y = 0.

Verify that ¢,z + c,2? (cy, ¢, constants) is a solution of the differential
equation z%y” — 2zy’ + 2y = 0.

Determine r(z) so that the function sin log z(z > 0) is a solution of the
differential equation [r(z)y’']" + g = 0.
Verify that sin z is a solution of the differential equation y'2 + y2 = 1.

Verify that if ¢, and ¢, are constants and = > 0, the function

1 1
€y SIn — + €5 COS —
x x

is & solution of the differential equation (z2%y’)’ + x~2y = 0.

Verify that sin z, cos z, sinhz = }(e* — e~ %), and coshz = }(e* + e~ %)
are solutions of the differential equation y” — y = 0.



4 Elementary methods [Chap. 1]

10. Show that if @ and b are constants, the function (a? sin? x + b2 cos? x)1/2 ig
a solution of the differential equation y3(y” + y) = a2b? on the interval
— I Z < oo.

Answers

2. (a) e=.

2 Linear differential equations of first order

A linear differential equation of first order is an equation that can be
put in the form

(2.1) kx)y" + m(z)y = s(z).

On intervals on which k(z) # 0, both members of this equation may be
divided by k(x), and the resulting equation has the form

(2.2) Yy + a(x)y = b(x).

We shall suppose that a(x) and b(x) are continuous on some interval a < x < b.
There are two commonly used elementary methods for solving an equation
of the form (2.2).

Method 1. To solve equation (2.2), we may multiply both members of
the equation byt

(23) ef a@) dxy
and we have
(2.4) [ef s@ dzy ) — p(g)ef @ dz,

To solve (2.4) for y, we write

efa(x) d.’z‘y =c + fb(x)eia(x)dz dx (c constant),

and, finally,

t By the symbol [ a(z) do is meant any function A(x) such that A’(x) = a(x)
(@a <2 <b).
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(2.5) y = e-o@az [c X fb(x)ela(z)dx dz].

The student is advised to use the method described for solving an equation
(2.2) rather than formula (2.5).

Example. Solve the differential equation
2.1y 2%y + 2y =2 + 22 (x > 0).

We first put this equation in the form (2.2) by dividing it through by x2:
/ , 12

(2.2) y+-y=x= + 1.

Here a(x) = 1/x and b(z) = 1 + 2/x%. We note that

jé
2.3)’ ga@dz _ T _ gosz _ 4

If both members of (2.2)" are multiplied by z, we have

/ , 2
(2.4) (xy)' = i
From (2.4)" we have successively

x2
xy=2logx+§ + ¢,

and

, 2 z ¢
(2.5) y-;logx+-2-+5 (x > 0).

Method 2. This method is of theoretical importance, and it is a method
that generalizes to linear differential equations of higher order.
Consider the differential equation

(2.2) Yy + a(x)y = b(x)
and the associated homogeneoust equation
¥ + a(@)y =0.
It is easy to see by substitution that a solution of the latter equation is

e~ fa@)dx

. .1 We shall follow the custom of italicizing words and phrases that are being defined
either explicitly or implicitly in the text.



6 Elementary methods [Chap. 1]

To complete the solution of (2.2) we introduce a new variable v in (2.2) by
means of the substitution

(2.6) y = e-fa@)dzy

y’ = e—fa(z)dx[v' — a(x)v]_

Equation (2.2) becomes
e-la@dzy b(z),

and so
v = b(x)ela(x)dz.

The last equation yields
v=c+ fb(x)e“""’“ dx.

Using (2.6) we then have )
Y = e-!a(:c)dz[c 4+ fb(x)ela(x)dx dx]’
which agrees with equation (2.5).
It will be instructive to apply the second method to the equation
2.1y 2%y + xy = 2 + a2 (x > 0)
of the preceding example. The associated homogeneous equation
_
Yy + . Yy = 0
has the solution

dx
e—!a(x)d:r: - e—j? o _:!'__
x

We accordingly substitute

R

in (2.1)’ obtaining
1 1 1
A =g e b = 2
x(xv xzv)+x(xv) 2 4+ (x > 0),
or

+ z.

RIN

Thus,

x2
v=2logx+§-+c,
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and

2 r ¢

y=;logx+§+5 (z > 0),
which is (2.5)".
The form of the solution of (2.2). We have observed above that
e—l a(x)dx

is a solution of the homogeneous equation
(2.7) Yy + a(zx)y = 0.
Clearly, if ¢ is any constant,

(28) ce~fa@dx

is also a solution. We shall learn later that (2.8) is the general solution of
equation (2.7)—that is, every solution of (2.7) may be put in this form.
Suppose now that y,(z) is some particular solution of the nonhomogeneous
equation

(2.9) v + alz)y = b@)
CE

that is to say,

(2.10) Yo(x) +|ale)yo(x) = blapg |

(2.11) Y = Y%(®)

is then also a solution of (2.9) for each value of ¢. We shall prove later that
(2.11) provides the general solution of (2.9).

Example. Consider the differential equation
(2.12) ¥y +y=3.
The corresponding homogeneous equation is

Y +y=0,

which has solutions



