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Foreword

Erich Hecke was granted sabbatical leave from the University of Hamburg
in the first half of 1938. This leave was to be spent at the Universities of Michigan
and Princeton. While in America, Hecke held lectures based on his investiga-
tions conducted between 1935 and 1937. These had been published in Mathe-
matische Annalen Bd 112 (1936) and Bd 114 (1937). For the lectures Hecke had
prepared notes in English, and these survived. In addition notes taken by one
of the audience were subsequently circulated in planographed form. Hecke’s
manuscript and the notes are substantially in agreement. The differences are
almost entirely limited to form and language. The version of the lectures
published here is based on both the manuscript and the lecture notes. Here the
reader will find no new results over and above in the papers to which reference
has already been made. The major difference from the publications is that in
the present book considerable emphasis has been placed on elucidating Heckes
basic ideas.

The manuscript has been prepared for press by Dr. R.-D. Kulle, who is also
responsible for several improvements.
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Introduction

1. The Riemann zeta function

The starting point of analytic theory of numbers can be traced back to the
paper of Riemann 1859. He states the following point of view: An arithmetical
problem of the kind: “To determine an arithmetically defined function a(n)
of an integer » in its dependence on »” is equivalent with a problem: “To

0
investigate an analytical function ) a(n)f,(z) with suitable f,(z)”, specially
n=1
by its behaviour on its singular points.
The problem of the distribution of the prime numbers p thus can be

associated with the function )’ z? for example; but we are not able to examine

p
this function or to state a connex between this function and other already
known functions. Instead of that Riemann considers the function ) p~*

p
defined for all s with Re(s) > 1. He shows by using a statement of Euler that
the function can be reduced into a simpler function, namely

{(s) = i n~* Re(s)>1.
=1

For there exists the so called Euler product

C(S)=H 1>

and from this follows

logl(s) = — Y log(l—p ™)=Y p*+31Yp 2+ =Y = +20),
p p 14 p

pS
where g(s) is determined by Dirichlet series which is obviously regular in the
half-plane Re(s) > 3. Therefore the singular points of )" p~* and log{(s) in

14
the Re(s) > 4 are the same and the investigation of Y p™* in this domaine

p
can be replaced by the investigation of log{(s). But the singular points of
log{(s) are the singular points of {(s) and the zeros of {(s). Now the point
s =1 must be singular, because it can easily be proved, that {(s)— oo if s—1.
Then ) p~* must have the singular point s = 1, and thus the number of
p

terms in this sum must be infinite, that means, the number of primes is infinite.
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But furthermore it can be also proved that (s — 1){(s) is regular in the half-
plane Re(s) > 0, and thus the only singular points of ) p~* in Re(s) > 7 are
P

1 .
1) s =1, where ) p~* —log T is regular
s —

14
2) all zeros of {(s) in the domain Re(s)> %

Now the famous hypothesis of Riemann arises:
{(s) =0 in Re(s)> 1.

And then Riemann tries to study the behaviour of {(s) in order to obtain
some new theorems concerning the distribution of prime numbers. And indead;
if m(x) denotes the number of primes < x, than n(x) can be expressed in
the form

n(x) = f% + e(x)

1

where e(x) depends on the zeros of {(s) and is of the order O (xiﬂ), if the
Riemann hypothesis is true. Riemann gives only a scetch of the prove, many
ideas yet were wanting, for example in order to prove correctly this theorem it
was necessary to find a theory of entire functions of finite genus, stated later by
Hadamard and de la Vallée-Poussin. The first important step has been made
already by Riemann himself, proving that {(s) can be continuated analytically
in the total finite plane and that (s — 1){(s) is an entire function of s.

Together with that Riemann proves also the important functional equation

of {(s):
)c(l ~9),

n'%rG)c(s):n z r<

=
n T <%> {(s) is invariant under s— 1 — s.

The present investigation springs from the connection between the Riemann
{(s), the theta function 9(zr) and the functional equation for {(s).

The first proof of the functional equation is based upon a general statement,
transforming a Dirichlet series into a power series by means of the I'-integral.
According the representation of I'(s)

()= e *x*"1dx, Re(s)>0
0o

it results

1) “SP(s) = _[e Bt dx for every / > 0.



Hence, for 0</; <[, < ...

(i a,ls ) (s) = sz—1(i a,e”"*)dx,
o n=1

n=1
of course under certain asymptions about the convergence of the Dirichlet

series.
In particular, for /, =n,a, =1

I
o8

LI (s) = Tx‘_l ( il e~ ")dx
] n=

C

The integral is then transformed by the methods of the classical theory of
analytical functions, into one in the complex x-plane. The contour is to include
the singular points, 0 and oo, of the integrand as well as a cut connecting
these points. But it does not include other zeros of e* — 1.

—ins s—1

e %
(9T = 2isinms g e —1 5

The new integral is defined for all s and is an analytic, integral function of s.
The functional equation follows by applying Cauchy’s theorem for Re(s) < 0.
In fact, one obtains '
s—1 00 s—1

27 1x ¥ bt 27 1x

COS — COS —
2 2

{@Ir(s) = {(1 —s), Re(s) <0.

—5
This may be expressed by the assertion n >I <§> {(s) is invariant under
s—1—s.



. : o 5 s .
This suggested a new proof to Riemann, by substituting / —n*n,s — 3 in1)
. 2 © —
T 2n-sr(i> - je—nlxnx% ldx
2) o

x ir (%) ) =[x EZI e~ %) dx .

0

8

And now the functional equation of {(s) is a simple consequence of the trans-
formation formula for the theta-function

S(r)= Y ér=1+2Y €™, Im(r)>0,

n=-—o n=1

9(— %) =1/ =it8(x).

For
Oj?x%_l(i e ™ *)dx = ujox_% l(i e:?l—)dx+ aj?x‘%_ (i e ™ *)dx
0 n=1 1 n=1 1 n=1

But

T emrr = 4 (9(x) — 1).
n=1

Applying the functional equation for 3(ix) gives the functional equation for
£(s)-

The functional equation for {(s) is very important, particularly because
{(s) is uniquely determined by it under certain assumptions of regularity. The
proof by Mr. Hamburger in 1921 is simple. One expresses the partial sum of
the coefficients of a Dirichlet series by means of an integral to which the func-
tional equation is applied. The proposition then results.

But the reasoning is not satisfactory. We do not comprehend the genuine
reason for the existence of the functional equation since Riemann’s method of

: 8 . SE g 3
replacing s by 3 is no more than a verification, a device to produce an

isolated fact. Nor do we see why the assumptions of the functional equation
and of regularity are so strong as to imply the uniqueness of the solution.
Indeed, the theorem can be greatly extended and then it can be interpreted
more intelligibly.

Furthermore, there are many other Dirichlet series ¢(s) satisfying a similar
type of functional equation:

=5 b c
(&) rerr(z)r ()0

is invariant under s— k —s for given 1> 0, k> 0.

10



For example:

Na=1,b=c=0,A= |]/B| for the zeta-function of an imaginary qua-
dratic field K (/D).

2)a=0,b=2,c=0,4= 2|]/5| for the zeta-function of a real quadratic
field K (/D).

3)a=b=0,c=1 or a=c=0,b=1 for the L-series L(s,y) mod m
in the rational field with primitiv character. Here is 4 = ZW and
x(—=1) = —1 for the first case, y(—1) = 1 for the second case.

In1),2),3)is k= 1.
All these series have Eulerian products of the type

e =10 —ap™) (1 —-ap )"

where p ranges through the prime numbers, a,, @, being coefficients inde-
pendent of s. The functional equation is always proved by reduction to
multiple theta-functions or similar series.
By a simple I'-factor we shall mean one with one of a, b, c = 1, the others
=0,ora=0and b=c=1.

Let us recall the relation

2s-lr<%>r<“2r 1) —22r).

There is a fundamental clarification of the relations existing between the
Dirichlet series which satisfy a functional equation with a simple I'-factor and
the general automorphic functions, in particular, modular functions.

At first I will report the ideas and the character of the theory by examples
without complet proofs. :

It will be possible to determine uniquely many of the Dirichlet series of
arithmetic by means of functional properties, for example {(s) and the zeta-
functions of the imaginary quadratic fields.

Further, it will be proved that the Euler product is the counterpart of a new
algebraic property of the modular functions; indeed many of these Dirichlet
series have an Eulerian product — a fact not hitherto known.

Finally, by application of these theorems to multiple theta-series, there
results a set of new and remarkable assertions concerning quadratic forms
with integral coefficients. These are of a purely arithmetical character, un-
known up to now.

It is possible to give the complet theory with proofs in few lectures, but I
will try to give the main-ideas and the character of the results which are partly
very unexpected.

11



2. Associated Dirichlet series and power series

Now for the connection between these ideas: We consider the expression

2r

(1) RE) = (7)_sr(s)<p(s)

formed with an arbitrary function ¢(s) and we will say
“@(s) has signature (4, k, y)”
if with given 4> 0, k>0, y an arbitrary constant
1) R(s) = yR(k — s).
2) (s —k)p(s) is an integral function of finite genus.
(To say that f(s) has finite genus means that there is a constant M such
that |f(s)| < e'*'™ as |s|— o0.)
3) @(s) is a Dirichlet series which converges somewhere.

Obviously y = +1. First we assume ¢(s) to be a Dirichlet series of the
form
Q0
Z anl;s,0<ll<lz< e 0.0
n=1
and we introduce the assumption that the 1’s are integers.
We associate to the Dirichlet series

o0

o) =Y a,l”,
n=1
the series

2milyt

@ f@=ao+ 3 age

where the coefficient a, is determined afterwards by means of the residue of
¢@(s) at s =k The function f(r) is regular in the upper half-plane of the
complex variable 7. This formal correspondence can be realized by an analytic
functional transformation

o _2mlyt &
Ris)= [ (Y ae * )x*"ldx = [ (f(ix) —ao)x* ~ldx.
0 n=1 0

But also conversly by Mellin’s formula

®) fE9-ao=5- [ RExds.

Re(s) =ao

12



From both formulas it follows that
1) If
1
-2
(—_‘ITT)T' =-yf(7)
2z

_k 3
where a, = y<7> (k) - Residue ¢(s) at s = k.

R(s) = yR(k —s), then

2) If

(- %) — (=9 1f(@), then R(s) = yR(k—s).
This is valid if f(z) does not increase too rapidly as t— 0 so that j has
a significance. g

The demand that ¢(s) be a special Dirichlet series ) a,n”* is precisely
n=1

equivalent to the assertion that f(r) defined by (3) is periodic with period A.

The first Main Theorem states: 7o every Dirichlet series with signature
(A, k, y) there corresponds one and only one function f(t) under a linear func-
tional transformation with the properties

27it

a) f(t+A) = f(zr) and f() is regular in e * in the upper half-plane of t.
1

-3

W = 7f(1)

¢) fix+iy) =0 as y— +0 uniformly in real x.

b)

Inversely, to every function f(t) satisfyinga),b),c) there corresponds a Dirichlet
series of signature (A, k, y).

The quotient of two such functions f(t) with the same (4, k, 7) is obviously
an analytic function of t invariant under the group (1) of substitutions
generated by

1
U:t—>1t4+4, T: 71— ——.
T
Thus every linear functional theorem concerning such automorphic functions
can be translated into a theorem on the Dirichlet series for (4, k, 7).
For example — and this is the first kind of result —

1) 0<A<2. ®(1) is the modular group. Therefore, a Dirichlet series with
k

signature (1,k,y) exists if and only if k is even integer, kK =4,y = (— 1)7.

13



In this case the number of linearly independent solutions of the problem
with given (1, k, ) is finite and equal to

l:%] +1, if k% 2 (mod 12)

|:-1k§:| , if k=2 (mod 12).

([a] is the greatest integer less than or equal to a.)
Obviously there is always a solution

@(s) =) Ls—k+1)

and there are no other solutions for k < 12.
A Dirichlet series for (1, k,y) has an infinity of zeros on the mean line

Re(s) = % if and only if it is regular at s = k.

If 0<A<2 there exists only a finite number of linearly independent
functions ¢(s) for (4, k, y). But this number is greater than zero only for a
discrete set of values of 4 and k. Thusif A = 1, k must be an even integer.

2) A = 2. ®(2) is a subgroup of the modular group of index 3 associated with
the theta-functions. For the signature (2, k, 1) there exists a solution for
all positive k, the number of linearly independent ones being finite and
equal to

o

Hence for k <4, there is a unique solution. For example

k=3%:0()=1{(29).
In this case ¢(3s) is also a special Dirichlet series. That means that in

[+ ]
()= )Y a,n% the a,’s are zero if n is not a square. This seems to
n=1

be the suitable form of the theorem concerning {(s).

k = 1: ¢(s) = zeta-function of the field K(}/—1) equals {(s)- L(s).
k=2 @)= L)L — D1 —2272).

In all cases k <4, the Dirichlet series with signature (2, k, 1) are associated
with 92*(r). And the function {(s) is an element of a set of series depending
continuously on a parameter k. Each of these series has an infinity of zeros

on its mean line Re(s) = %

14



For the signatur (2, k, —1) the number of linearly independent solutions
is equal to

2]

3) If A>2, there exists for every positive k an infinite number of linearly
independent Dirichlet series with the same signature (4, k, y). It follows
that there is an infinite number of Dirichlet series satisfying the functional
equation of the zeta-function of the imaginary quadratic fields K(}/ —D)
of discriminant — D, D > 4.

3. The Euler product

To determine such a Dirichlet series uniquely, one must consider additional
conditions.

1) The postulate of a single functional equation is replaced by a system of
linear functional equations for a system of Dirichlet series. In addition con-

a0
gruence conditions are stated for the basis numbers n of @(s) = ) a,n"*
n=1

This idea conduces to the statement that for example there is an infinity of
such nontrivial functional equations between ((s) and the L-series. It seems
inevitable for a discussion of {(s) to use also these relations being let beside
till now, except in the additiv theory of prime numbers of Hardy-Littlewood
by considering )’ x?, where one has used similar statements. In this way one

obtains in all im;ortant cases (for A > 2) the finiteness of the number of solu-
tions of these problems. This will be developed systematically later.

2) Furthermore, in order to specify in a linear set of solutions the most im-
portant single function, it is necessary (in the case of ® (1) = modular group)
to notice a new, general arithmetical property of the power series of the modular
functions. This is equivalent with the Euler product. For the simplest cases, the
final results in terms of Dirichlet series are here appended.

We consider the complete set of linearly independent Dirichlet series with
the same signature (1, k,y). Denote them by ¢ (s), '®(s), ... 9™ (s); each
is associated with the modular group &(1). To this we apply the recently
developed theorems on modular functions.

Putting ¢™(s) = Y a™(n)n~*, there exists a set of x quadratic matrices
n=1

B®™ with constant elements and of degree x such that: The B®™ form a basis

of a commutative ring of quadratic matrices of degree x. The ring is of rank «.

15



The matrices

@ A= 3 a®m)BY = (i, ")

v=1

formed with the coefficients a{” have a simple multiplication theorem

5) Alm)-im) = Y A(L;;)dk-l

dim,n

and this property of the A(n) is equivalent to the assertion that the matrix of

Dirichlet series ®(s) = Y Amn~*= Y @™ (s)B™ = (¢,,(s)) has an Euler

n=1 v=1

L
product &(s) = [[(E—A(p)p™*+p* 1" ¥E)" !, E= ( 00 )
P 1

Although it is not generally true that each ¢ (s) has an Euler product,
the set of functions ¢ (s) can be joined by the matrices B* to a matrix @(s)
having an Euler product.

Thus the coefficients a*(n) are known if the a®(p) are known only for the
prime numbers p.

Now by using an arbitrary constant matrix 4, det4 + 0,

P*(s) = A-P(s)- A}

has also such an Euler product with A(p) replaced by A -A(p)- A~ 1. This is
effected by replacing the basis (¢ (s)) by another basis A (¢®(s)).

But from a general lemma of algebra, it is possible to choose A4 in such a
way that the commutative matrices B are simultaneously brought in the
triangular form

bu blz ' b1x

0 by by,
B = 0"

0 0---0 b,

with elements below the main diagonal being zero. Then the matrices &* (s)
and

An)=A-An)-A°!

are also of this form. But the elements in the diagonal of &*(s) are the
characteristic roots of &* hence of ®. Hence these characteristic roots
belong to the linear set of (¢*)(s),..., 9 (s)). They are the really interesting
solutions of the (1, k, y)-problem.
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